395 research outputs found

    JAMES F. TRAER. — Marriage and the Family in Eighteenth-Century France.

    Get PDF

    Gender Solidarities in Late Eighteenth-Century Urban France: The Example of Rouen

    Get PDF

    RICHARD COBB. — Death in Paris, 1795-1801.

    Get PDF

    Differential signaling mechanisms regulate expression of CC chemokine receptor-2 during monocyte maturation

    Get PDF
    BACKGROUND: Peripheral blood monocytes and monocyte-derived macrophages are key regulatory components in many chronic inflammatory pathologies of the vasculature including the formation of atherosclerotic lesions. However, the molecular and biochemical events underlying monocyte maturation are not fully understood. METHODS: We have used freshly isolated human monocytes and the model human monocyte cell line, THP-1, to investigate changes in the expression of a panel of monocyte and macrophage markers during monocyte differentiation. We have examined these changes by RT-PCR and FACS analysis. Furthermore, we cloned the CCR2 promoter and analyzed specific changes in transcriptional activation of CCR2 during monocyte maturation. RESULTS: The CC chemokine receptor 2 (CCR2) is rapidly downregulated as monocytes move down the macrophage differentiation pathway while other related chemokine receptors are not. Using a variety of biochemical and transcriptional analyses in the human THP-1 monocyte model system, we show that both monocytes and THP-1 cells express high levels of CCR2, whereas THP-1 derived macrophages fail to express detectable CCR2 mRNA or protein. We further demonstrate that multiple signaling pathways activated by IFN-Îł and M-CSF, or by protein kinase C and cytoplasmic calcium can mediate the downregulation of CCR2 but not CCR1. CONCLUSION: During monocyte-to-macrophage differentiation CCR2, but not CCR1, is downregulated and this regulation occurs at the level of transcription through upstream 5' regulatory elements

    Multisensory medical illustrations of Buruli ulcer for improved disease detection, help seeking behaviour and adherence to treatment

    Get PDF
    Buruli ulcer (BU) is a skin infection caused by Mycobacterium ulcerans and a neglected tropical disease of the skin (skin NTD). Antibiotic treatments are available but, to be effective in the absence of surgery, BU must be detected at its earliest stages (an innocuous-looking lump under the skin) and adherence to prescribed drugs must be high. This study aimed to develop multisensory medical illustrations of BU to support communication with at-risk communities. We used a Think Aloud method to explore community health workers’ (n = 6) experiences of BU with a focus on the role of their five senses, since these non-medical disease experts are familiar with the day-to-day challenges presented by BU. Thematic analysis of the transcripts identified three key themes relating to ‘Detection,’ ‘Help Seeking,’ and ‘Adherence’ with a transcending theme ‘Senses as key facilitators of health care’. New medical illustrations, for which we coin the phrase “5D illustrations” (signifying the contribution of the five senses) were then developed to reflect these themes. The senses therefore facilitated an enriched narrative enabling the production of relevant and useful visuals for health communication. The medical artist community could utilise sensory experiences to create dynamic medical illustrations for use in practice.</p

    Stromal Derived Factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis

    Get PDF
    Renal cell carcinoma (RCC) is characterized by organ-specific metastases. The chemokine stromal derived factor-1 (SDF-1/CXCL12) and its receptor CXCR4 have been suggested to regulate organ-specific metastasis in various other cancers. On this basis, we hypothesized that the biological axis of CXCL12 via interaction with its receptor, CXCR4, is a major mechanism for RCC metastasis. We demonstrated that CXCR4 was significantly expressed on circulating cytokeratin+ RCC cells from patients with known metastatic RCC. We detected up-regulation of CXCR4 mRNA and protein levels on a human RCC cell line by either knockdown of the von Hippel-Lindau (VHL) tumor suppressor protein, or incubating the cells under hypoxic conditions. The enhanced CXCR4 expression was mediated through the interaction of the Hypoxia Inducible Factor-1α (HIF-1α) with the promoter region of the CXCR4 gene. Furthermore, the expression of CXCR4 on human RCC directly correlated with their metastatic ability in vivo in both heterotopic and orthotopic SCID mouse models of human RCC. Neutralization of CXCL12 in SCID mice abrogated metastasis of RCC to target organs expressing high levels of CXCL12; without altering tumor cell proliferation, apoptosis, or tumor-associated angiogenesis. Therefore, our data suggest that the CXCL12/CXCR4 biological axis plays an important role in regulating the organ-specific metastasis of RCC

    The Stromal Derived Factor–1/CXCL12–CXC Chemokine Receptor 4 Biological Axis in Non–Small Cell Lung Cancer Metastases

    Full text link
    Non-small cell lung cancer is characterized by a specific metastatic pattern. The mechanism for organ-specific metastasis is poorly understood, although evidence has suggested that the chemokine stromal derived factor-1 (CXCL12) and its cognate receptor CXCR4 may regulate breast cancer metastasis. We hypothesized that the CXCL12-CXCR4 biological axis is important in mediating non-small cell lung cancer metastases. Our results indicate that both non-small cell lung cancer tumor specimens resected from patients and non-small cell lung cancer cell lines express CXCR4, but not CXCL12. Non-small cell lung cancer cell lines undergo chemotaxis in response to CXCL12.CXCL12-CXCR4 activation of non-small cell lung cancer cell lines showed intracellular calcium mobilization and mitogen-activated protein kinase activation with enhanced extracellular signal-related kinase-1/2 phosphorylation without change in either proliferation or apoptosis. Target organs in a murine model that are the preferred destination of human non-small cell lung cancer metastases elaborate higher levels of CXCL12 than does the primary tumor; and suggest the generation of chemotactic gradients. The administration of specific neutralizing anti-CXCL12 antibodies to severe combined immunodeficient mice expressing human non-small cell lung cancer abrogated organ metastases, without affecting primary tumor-derived angiogenesis. These data suggest that the CXCL12-CXCR4 biological axis is involved in regulating the metastasis of non-small cell lung cancer
    • 

    corecore