44,508 research outputs found
Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites
The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2)sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix
Finite-Temperature Quasicontinuum: Molecular Dynamics without All the Atoms
Using a combination of statistical mechanics and finite-element interpolation, we develop a coarse-grained (CG) alternative to molecular dynamics (MD) for crystalline solids at constant temperature. The new approach is significantly more efficient than MD and generalizes earlier work on the quasicontinuum method. The method is validated by recovering equilibrium properties of single crystal Ni as a function of temperature. CG dynamical simulations of nanoindentation reveal a strong dependence on temperature of the critical stress to nucleate dislocations under the indenter
Quasicontinuum simulation of fracture at the atomic scale
We study the problem of atomic scale fracture using the recently developed quasicontinuum method in which there is a systematic thinning of the atomic-level degrees of freedom in regions where they are not needed. Fracture is considered in two distinct settings. First, a study is made of cracks in single crystals, and second, we consider a crack advancing towards a grain boundary (GB) in its path. In the investigation of single crystal fracture, we evaluate the competition between simple cleavage and crack-tip dislocation emission. In addition, we examine the ability of analytic models to correctly predict fracture behaviour, and find that the existing analytical treatments are too restrictive in their treatment of nonlinearity near the crack tip. In the study of GB-crack interactions, we have found a number of interesting deformation mechanisms which attend the advance of the crack. These include the migration of the GB, the emission of dislocations from the GB, and deflection of the crack front along the GB itself. In each case, these mechanisms are rationalized on the basis of continuum mechanics arguments
Surface figure measurements of radio telescopes with a shearing interferometer
A new technique for determining the surface figure of large submillimeter wavelength telescopes is presented, which is based on measuring the telescope’s focal plane diffraction pattern with a shearing interferometer. In addition to the instrumental theory, results obtained using such an interferometer on the 10.4-m diam telescope of the Caltech Submillimeter Observatory are discussed. Using wavelengths near 1 mm, a measurement accuracy of 9 µm, or λ/115, has been achieved, and the rms surface accuracy has been determined to be just under 30 µm. The distortions of the primary reflector with changing elevation angle have also been measured and agree well with theoretical predictions of the dish deformation
Specific heat of BaKFeAs, and a new method for identifying the electron contribution: two electron bands with different energy gaps in the superconducting state
We report measurements of the specific heat of
BaKFeAs, an Fe-pnictide superconductor with
= 36.9 K, for which there are suggestions of an unusual electron pairing
mechanism. We use a new method of analysis of the data to derive the parameters
characteristic of the electron contribution. It is based on comparisons of
-model expressions for the electron contribution with the total
measured specific heat, which give the electron contribution directly. It
obviates the need in the conventional analyses for an independent, necessarily
approximate, determination of the lattice contribution, which is subtracted
from the total specific heat to obtain the electron contribution. It eliminates
the uncertainties and errors in the electron contribution that follow from the
approximations in the determination of the lattice contribution. Our values of
the parameters characteristic of the electron contribution differ significantly
from those obtained in conventional analyses of specific-heat data for five
similar hole-doped BaFeAs superconductors, which also differ
significantly among themselves. They show that the electron density of states
is comprised of contributions from two electron bands with
superconducting-state energy gaps that differ by a factor 3.8, with 77
coming from the band with the larger gap. The variation of the specific heat
with magnetic field is consistent with extended -wave pairing, one of the
theoretical predictions. The relation between the densities of states and the
energy gaps in the two bands is not consistent with a theoretical model based
on interband interactions alone. Comparison of the normal-state density of
states with band-structure calculations shows an extraordinarily large
effective mass enhancement, for which there is no precedent in similar
materials and no theoretical explanation.Comment: 30 pages, 7 figures, submitte
Resonance tube igniter
Reasonance induced in stoichiometric mixtures of gaseous hydrogen-oxygen produces temperatures /over 1100 deg F/ high enough to cause ignition. Resonance tube phenomenon occurs when high pressure gas is forced through sonic or supersonic nozzle into short cavity. Various applications for the phenomenon are discussed
Dislocation plasticity in thin metal films
This article describes the current level of understanding of dislocation plasticity in thin
films and small structures in which the film or structure dimension plays an important
role. Experimental observations of the deformation behavior of thin films, including
mechanical testing as well as electron microscopy studies, will be discussed in light of
theoretical models and dislocation simulations. In particular, the potential of applying
strain-gradient plasticity theory to thin-film deformation is discussed. Although the
results of all studies presented follow a “smaller is stronger” trend, a clear functional
dependence has not yet been established
Quasicontinuum Models of Interfacial Structure and Deformation
Microscopic models of the interaction between grain boundaries (GBs) and both
dislocations and cracks are of importance in understanding the role of
microstructure in altering the mechanical properties of a material. A recently
developed mixed atomistic and continuum method is extended to examine the
interaction between GBs, dislocations and cracks. These calculations elucidate
plausible microscopic mechanisms for these defect interactions and allow for
the quantitative evaluation of critical parameters such as the stress to
nucleate a dislocation at a step on a GB and the force needed to induce GB
migration.Comment: RevTex, 4 pages, 4 figure
- …