40,939 research outputs found
Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites
The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2)sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix
Measurement of the sizes of circumstellar dust shells around evolved stars with high mass loss rates
The research supported by the NASA ADP contract NAG5-1153 has been completed. The attached paper, which will be submitted for publication in the Astrophysical Journal in January 1992, presents the results of this work. Here is a summary of the project and its results. A set of computer programs was developed to process the raw 60 micron and 100 micron IRAS survey data. The programs were designed to detect faint extended emission surrounding a bright unresolved source. Candidate objects were chosen from a list of red giant stars and young planetary nebulae which have been detected in millimeter/submillimeter lines of CO. Of the 279 stars examined, 55 were resolved at 60 microns. The principle results of the study are given. The average age for the shells surrounding the 9 Mira-type stars which are extended is 6 x 10(exp 4) yr. This suggests that the period during which these stars lose mass lasts for approx 10(exp 5) yr. The oldest shell found surrounds U Ori, and the youngest surrounds Mira itself. Some shells appear to be detached from the central star. This phenomenon is more common among older stars, suggesting that the mass loss becomes more episodic as the star sheds its envelope. Although all 8 stars less distant than 200 pc are resolved in the IRAS 60 micron data, 29 stars within 500 pc were not. These stars probably have younger circumstellar shells than those which were resolved. Almost all the carbon stars with distances of 500 pc or less have resolved shells, while only 1/2 of the oxygen-rich stars do. The resolved carbon star shells also are older on average than the oxygen-rich ones. These facts imply that carbon stars have been losing mass for a longer period, on average, than oxygen-rich red giants. Large circumstellar shells tend to be found at large distances from the galactic plane, confirming that the ISM density limits the size to which a dust shell can grow. Surprisingly, even very large shells seem to be nearly spherical, and do not appear to be distorted by ram-pressure caused by the star's motion with respect to the ISM. Radiative transfer models and the value of I sub 60 microns/I sub 100 microns allow the average dust temperature in the outer regions of a circumstellar shell to be estimated. The typical value obtained in about 35 K
A 100 GHz Josephson mixer using resistively-shunted Nb tunnel junctions
The authors describe preliminary mixer results using resistively shunted Nb/AlOx/Nb tunnel junctions in a 100-GHz waveguide mixer mount. The mixer utilizes robust, lithographically defined devices which have nonhysteretic I-V curves. A receiver temperature of 390 K (DSB) has been obtained with a conversion loss of -6.5 dB. The receiver's behavior agrees qualitatively with the behavior predicted by the resistively shunted junction model. Substantial improvements in performance are expected with the use of better-optimized shunted junctions and numerical simulations suggest that, if devices with higher ICRN (critical-current normal-resistance) products can be obtained. Josephson effect mixers could be competitive with superconductor-insulator-superconductor (SIS) mixers at high frequencies
Surface figure measurements of radio telescopes with a shearing interferometer
A new technique for determining the surface figure of large submillimeter wavelength telescopes is presented, which is based on measuring the telescope’s focal plane diffraction pattern with a shearing interferometer. In addition to the instrumental theory, results obtained using such an interferometer on the 10.4-m diam telescope of the Caltech Submillimeter Observatory are discussed. Using wavelengths near 1 mm, a measurement accuracy of 9 µm, or λ/115, has been achieved, and the rms surface accuracy has been determined to be just under 30 µm. The distortions of the primary reflector with changing elevation angle have also been measured and agree well with theoretical predictions of the dish deformation
Specific heat of BaKFeAs, and a new method for identifying the electron contribution: two electron bands with different energy gaps in the superconducting state
We report measurements of the specific heat of
BaKFeAs, an Fe-pnictide superconductor with
= 36.9 K, for which there are suggestions of an unusual electron pairing
mechanism. We use a new method of analysis of the data to derive the parameters
characteristic of the electron contribution. It is based on comparisons of
-model expressions for the electron contribution with the total
measured specific heat, which give the electron contribution directly. It
obviates the need in the conventional analyses for an independent, necessarily
approximate, determination of the lattice contribution, which is subtracted
from the total specific heat to obtain the electron contribution. It eliminates
the uncertainties and errors in the electron contribution that follow from the
approximations in the determination of the lattice contribution. Our values of
the parameters characteristic of the electron contribution differ significantly
from those obtained in conventional analyses of specific-heat data for five
similar hole-doped BaFeAs superconductors, which also differ
significantly among themselves. They show that the electron density of states
is comprised of contributions from two electron bands with
superconducting-state energy gaps that differ by a factor 3.8, with 77
coming from the band with the larger gap. The variation of the specific heat
with magnetic field is consistent with extended -wave pairing, one of the
theoretical predictions. The relation between the densities of states and the
energy gaps in the two bands is not consistent with a theoretical model based
on interband interactions alone. Comparison of the normal-state density of
states with band-structure calculations shows an extraordinarily large
effective mass enhancement, for which there is no precedent in similar
materials and no theoretical explanation.Comment: 30 pages, 7 figures, submitte
Creation of entangled states in coupled quantum dots via adiabatic rapid passage
Quantum state preparation through external control is fundamental to
established methods in quantum information processing and in studies of
dynamics. In this respect, excitons in semiconductor quantum dots (QDs) are of
particular interest since their coupling to light allows them to be driven into
a specified state using the coherent interaction with a tuned optical field
such as an external laser pulse. We propose a protocol, based on adiabatic
rapid passage, for the creation of entangled states in an ensemble of pairwise
coupled two-level systems, such as an ensemble of QD molecules. We show by
quantitative analysis using realistic parameters for semiconductor QDs that
this method is feasible where other approaches are unavailable. Furthermore,
this scheme can be generically transferred to some other physical systems
including circuit QED, nuclear and electron spins in solid-state environments,
and photonic coupled cavities.Comment: 10 pages, 2 figures. Added reference, minor changes. Discussion,
results and conclusions unchange
Topological derivation of shape exponents for stretched exponential relaxation
In homogeneous glasses, values of the important dimensionless
stretched-exponential shape parameter beta are shown to be determined by magic
(not adjusted) simple fractions derived from fractal configuration spaces of
effective dimension d* by applying different topological axioms (rules) in the
presence (absence) of a forcing electric field. The rules are based on a new
central principle for defining glassy states: equal a priori distributions of
fractal residual configurational entropy. Our approach and its beta estimates
are fully supported by the results of relaxation measurements involving many
different glassy materials and probe methods. The present unique topological
predictions for beta typically agree with observed values to ~ 1% and indicate
that for field-forced conditions beta should be constant for appreciable ranges
of such exogenous variables as temperature and ionic concentration, as indeed
observed using appropriate data analysis. The present approach can also be
inverted and used to test sample homogeneity and quality.Comment: Original 13 pages lengthened to 21 pages (longer introduction, added
references and discussion of new experimental data published since original
submission
Morphological Phase Diagram for Lipid Membrane Domains with Entropic Tension
Circular domains in phase-separated lipid vesicles with symmetric leaflet composition commonly exhibit three stable morphologies: flat, dimpled, and budded. However, stable dimples (i.e., partially budded domains) present a puzzle since simple elastic theories of domain shape predict that only flat and spherical budded domains are mechanically stable in the absence of spontaneous curvature. We argue that this inconsistency arises from the failure of the constant surface tension ensemble to properly account for the effect of entropic bending fluctuations. Formulating membrane elasticity within an entropic tension ensemble, wherein tension represents the free energy cost of extracting membrane area from thermal bending of the membrane, we calculate a morphological phase diagram that contains regions of mechanical stability for each of the flat, dimpled, and budded domain morphologies
Excitation of methyl cyanide in the hot core of Orion
The excitation of CH_3CN in the hot core of Orion is examined using high-sensitivity observational data at 1.3 mm. Observed line fluxes are analyzed by means of multilevel statistical equilibrium (SE) calculations which incorporate current theoretical values of the collisional excitation rates. The analysis is applied to both optically thin models of the hot core region and models with significant optical depths.
Trapping is found to play a critical role in the excitation of CH_3CN. An optically thin analysis yields a kinetic temperature of 275 K and a cloud density of 2 x 10^6 cm^(-3). Unequal column densities are deduced in this case for the two symmetry species: N_A = 1.4 x 10^(14) cm^(-2) and N_E = 2.0 x 10^(14) cm^(-2). The deduced cloud density and temperature are lowered to 1.5 x 10^6 cm^(-3) and 240 K. The model with trapping is favored because of the agreement with measured sizes of the hot core source and the more plausible N_A/N_E ratio.
Analysis of radiative excitation in the hot core indicates it is unlikely to significantly affect the ground vibrational state populations of CH_3CN. It most likely is significant for excitation of the V_8 band
- …