475 research outputs found

    Bounded and unitary elements in pro-C^*-algebras

    Full text link
    A pro-C^*-algebra is a (projective) limit of C^*-algebras in the category of topological *-algebras. From the perspective of non-commutative geometry, pro-C^*-algebras can be seen as non-commutative k-spaces. An element of a pro-C^*-algebra is bounded if there is a uniform bound for the norm of its images under any continuous *-homomorphism into a C^*-algebra. The *-subalgebra consisting of the bounded elements turns out to be a C^*-algebra. In this paper, we investigate pro-C^*-algebras from a categorical point of view. We study the functor (-)_b that assigns to a pro-C^*-algebra the C^*-algebra of its bounded elements, which is the dual of the Stone-\v{C}ech-compactification. We show that (-)_b is a coreflector, and it preserves exact sequences. A generalization of the Gelfand-duality for commutative unital pro-C^*-algebras is also presented.Comment: v2 (accepted

    Use of a penicillin allergy clinical decision rule to enable direct oral penicillin provocation: an international multicentre randomised control trial in an adult population (PALACE): study protocol

    Get PDF
    Introduction Penicillin allergies are highly prevalent in the healthcare setting and associated with the prescription of second-line inferior antibiotics. More than 85% of all penicillin allergy labels can be removed by skin testing and 96%–99% of low-risk penicillin allergy labels can be removed by direct oral challenge. An internally and externally validated clinical assessment tool for penicillin allergy, PEN-FAST, can identify a low-risk penicillin allergy without the need for skin testing; a score of less than 3 has a negative predictive value of 96.3% (95% CI, 94.1 to 97.8) for the presence of a penicillin allergy. It is hypothesised that PEN-FAST is a safe and effective tool for assessing penicillin allergy in an outpatient clinic setting. Methods and analysis This is an international, multicentre randomised control trial using the PEN-FAST tool to risk-stratify penicillin allergy labels in adult outpatients. The study’s primary objective is to evaluate the non-inferiority of using PEN-FAST score-guided management with direct oral challenge compared with standard care (defined as prick and intradermal skin testing followed by oral penicillin challenge). Participants will be randomised 1:1 to the intervention arm (direct oral penicillin challenge) or standard of care arm (skin testing followed by oral penicillin challenge, if skin testing is negative). The sample size of 380 randomised patients (190 per treatment arm) is required to demonstrate non-inferiority. Ethics and dissemination The study will be performed according to the guidelines of the Helsinki Declaration and is approved by the Austin Health Human Research Ethics Committee (HREC/62425/Austin-2020) in Melbourne Australia, Vanderbilt University Institutional Review Board (IRB #202174) in Tennessee, USA, Duke University Institutional Review Board (IRB #Pro00108461) in North Carolina, USA and McGill University Health Centre Research Ethics Board in Canada (PALACE/2022-7605). The results of this study will be published and presented in various scientific forums

    Local Dynamics and Strong Correlation Physics I: 1D and 2D Half-filled Hubbard Models

    Full text link
    We report on a non-perturbative approach to the 1D and 2D Hubbard models that is capable of recovering both strong and weak-coupling limits. We first show that even when the on-site Coulomb repulsion, U, is much smaller than the bandwith, the Mott-Hubbard gap never closes at half-filling in both 1D and 2D. Consequently, the Hubbard model at half-filling is always in the strong-coupling non-perturbative regime. For both large and small U, we find that the population of nearest-neighbour singlet states approaches a value of order unity as T0T\to 0 as would be expected for antiferromagnetic order. We also find that the double occupancy is a smooth monotonic function of U and approaches the anticipated non-interacting limit and large U limits. Finally, in our results for the heat capacity in 1D differ by no more than 1% from the Bethe ansatz predictions. In addition, we find that in 2D, the heat capacity vs T for different values of U exhibits a universal crossing point at two characteristic temperatures as is seen experimentally in a wide range of strongly-correlated systems such as 3He^3He, UBe3UBe_3, and CeCu6xAlxCeCu_{6-x}Al_x. The success of this method in recovering well-established results that stem fundamentally from the Coulomb interaction suggests that local dynamics are at the heart of the physics of strongly correlated systems.Comment: 10 pages, 16 figures included in text, Final version for publication with a reference added and minor corrections. Phys. Rev. B, in pres

    Antiferromagnetic and van Hove Scenarios for the Cuprates: Taking the Best of Both Worlds

    Full text link
    A theory for the high temperature superconductors is proposed. Holes are spin-1/2, charge e, quasiparticles strongly dressed by spin fluctuations. Based on their dispersion, it is claimed that the experimentally observed van Hove singularities of the cuprates are likely originated by antiferromagnetic (AF) correlations. From the two carriers problem in the 2D t-J model, an effective Hamiltonian for holes is defined with %no free parameters. This effective model has superconductivity in the dx2y2{\rm d_{x^2-y^2}} channel, a critical temperature Tc100K{\rm T_c \sim 100K} at the optimal hole density, x=0.15{\rm x=0.15}, and a quasiparticle lifetime linearly dependent with energy. Other experimental results are also quantitativelyquantitatively reproduced by the theory.Comment: 12 pages, 4 figures (on request), RevTeX (version 3.0), preprint NHMF

    Low-Temperature Specific Heat of an Extreme-Type-II Superconductor at High Magnetic Fields

    Full text link
    We present a detailed study of the quasiparticle contribution to the low-temperature specific heat of an extreme type-II superconductor at high magnetic fields. Within a T-matrix approximation for the self-energies in the mixed state of a homogeneous superconductor, the electronic specific heat is a linear function of temperature with a linear-TT coefficient γs(H)\gamma_s(H) being a nonlinear function of magnetic field HH. In the range of magnetic fields H\agt (0.15-0.2)H_{c2} where our theory is applicable, the calculated γs(H)\gamma_s(H) closely resembles the experimental data for the borocarbide superconductor YNi2_2B2_2C.Comment: 7 pages, 2 figures, to appear in Physical Review

    Study protocol: Australasian Registry of Severe Cutaneous Adverse Reactions (AUS-SCAR)

    Get PDF
    Introduction Severe cutaneous adverse reactions (SCAR) are a group of T cell-mediated hypersensitivities associated with significant morbidity, mortality and hospital costs. Clinical phenotypes include Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS) and acute generalised exanthematous pustulosis (AGEP). In this Australasian, multicentre, prospective registry, we plan to examine the clinical presentation, drug causality, genomic predictors, potential diagnostic approaches, treatments and long-term outcomes of SCAR in Australia and New Zealand. Methods and analysis Adult and adolescent patients with SCAR including SJS, TEN, DRESS, AGEP and another T cell-mediated hypersensitivity, generalised bullous fixed drug eruption, will be prospectively recruited. A waiver of consent has been granted for some sites to retrospectively include cases which result in early mortality. DNA will be collected for all prospective cases. Blood, blister fluid and skin biopsy sampling is optional and subject to patient consent and site capacity. To develop culprit drug identification and prevention, genomic testing will be performed to confirm human leukocyte antigen (HLA) type and ex vivo testing will be performed via interferon-γ release enzyme linked immunospot assay using collected peripheral blood mononuclear cells. The long-term outcomes of SCAR will be investigated with a 12-month quality of life survey and examination of prescribing and mortality data. Ethics and dissemination This study was reviewed and approved by the Austin Health Human Research Ethics Committee (HREC/50791/Austin-19). Results will be published in peer-reviewed journals and presented at relevant conferences

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Lorentz breaking Effective Field Theory and observational tests

    Full text link
    Analogue models of gravity have provided an experimentally realizable test field for our ideas on quantum field theory in curved spacetimes but they have also inspired the investigation of possible departures from exact Lorentz invariance at microscopic scales. In this role they have joined, and sometime anticipated, several quantum gravity models characterized by Lorentz breaking phenomenology. A crucial difference between these speculations and other ones associated to quantum gravity scenarios, is the possibility to carry out observational and experimental tests which have nowadays led to a broad range of constraints on departures from Lorentz invariance. We shall review here the effective field theory approach to Lorentz breaking in the matter sector, present the constraints provided by the available observations and finally discuss the implications of the persisting uncertainty on the composition of the ultra high energy cosmic rays for the constraints on the higher order, analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references adde

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age
    corecore