475 research outputs found
Safety of cephalosporins in penicillin class severe delayed hypersensitivity reactions
Letter to the edito
Bounded and unitary elements in pro-C^*-algebras
A pro-C^*-algebra is a (projective) limit of C^*-algebras in the category of
topological *-algebras. From the perspective of non-commutative geometry,
pro-C^*-algebras can be seen as non-commutative k-spaces. An element of a
pro-C^*-algebra is bounded if there is a uniform bound for the norm of its
images under any continuous *-homomorphism into a C^*-algebra. The *-subalgebra
consisting of the bounded elements turns out to be a C^*-algebra. In this
paper, we investigate pro-C^*-algebras from a categorical point of view. We
study the functor (-)_b that assigns to a pro-C^*-algebra the C^*-algebra of
its bounded elements, which is the dual of the Stone-\v{C}ech-compactification.
We show that (-)_b is a coreflector, and it preserves exact sequences. A
generalization of the Gelfand-duality for commutative unital pro-C^*-algebras
is also presented.Comment: v2 (accepted
Use of a penicillin allergy clinical decision rule to enable direct oral penicillin provocation: an international multicentre randomised control trial in an adult population (PALACE): study protocol
Introduction Penicillin allergies are highly prevalent in the healthcare setting and associated with the prescription of second-line inferior antibiotics. More than 85% of all penicillin allergy labels can be removed by skin testing and 96%–99% of low-risk penicillin allergy labels can be removed by direct oral challenge. An internally and externally validated clinical assessment tool for penicillin allergy, PEN-FAST, can identify a low-risk penicillin allergy without the need for skin testing; a score of less than 3 has a negative predictive value of 96.3% (95% CI, 94.1 to 97.8) for the presence of a penicillin allergy. It is hypothesised that PEN-FAST is a safe and effective tool for assessing penicillin allergy in an outpatient clinic setting.
Methods and analysis This is an international, multicentre randomised control trial using the PEN-FAST tool to risk-stratify penicillin allergy labels in adult outpatients. The study’s primary objective is to evaluate the non-inferiority of using PEN-FAST score-guided management with direct oral challenge compared with standard care (defined as prick and intradermal skin testing followed by oral penicillin challenge). Participants will be randomised 1:1 to the intervention arm (direct oral penicillin challenge) or standard of care arm (skin testing followed by oral penicillin challenge, if skin testing is negative). The sample size of 380 randomised patients (190 per treatment arm) is required to demonstrate non-inferiority.
Ethics and dissemination The study will be performed according to the guidelines of the Helsinki Declaration and is approved by the Austin Health Human Research Ethics Committee (HREC/62425/Austin-2020) in Melbourne Australia, Vanderbilt University Institutional Review Board (IRB #202174) in Tennessee, USA, Duke University Institutional Review Board (IRB #Pro00108461) in North Carolina, USA and McGill University Health Centre Research Ethics Board in Canada (PALACE/2022-7605). The results of this study will be published and presented in various scientific forums
Local Dynamics and Strong Correlation Physics I: 1D and 2D Half-filled Hubbard Models
We report on a non-perturbative approach to the 1D and 2D Hubbard models that
is capable of recovering both strong and weak-coupling limits. We first show
that even when the on-site Coulomb repulsion, U, is much smaller than the
bandwith, the Mott-Hubbard gap never closes at half-filling in both 1D and 2D.
Consequently, the Hubbard model at half-filling is always in the
strong-coupling non-perturbative regime. For both large and small U, we find
that the population of nearest-neighbour singlet states approaches a value of
order unity as as would be expected for antiferromagnetic order. We
also find that the double occupancy is a smooth monotonic function of U and
approaches the anticipated non-interacting limit and large U limits. Finally,
in our results for the heat capacity in 1D differ by no more than 1% from the
Bethe ansatz predictions. In addition, we find that in 2D, the heat capacity vs
T for different values of U exhibits a universal crossing point at two
characteristic temperatures as is seen experimentally in a wide range of
strongly-correlated systems such as , , and . The
success of this method in recovering well-established results that stem
fundamentally from the Coulomb interaction suggests that local dynamics are at
the heart of the physics of strongly correlated systems.Comment: 10 pages, 16 figures included in text, Final version for publication
with a reference added and minor corrections. Phys. Rev. B, in pres
Antiferromagnetic and van Hove Scenarios for the Cuprates: Taking the Best of Both Worlds
A theory for the high temperature superconductors is proposed. Holes are
spin-1/2, charge e, quasiparticles strongly dressed by spin fluctuations. Based
on their dispersion, it is claimed that the experimentally observed van Hove
singularities of the cuprates are likely originated by antiferromagnetic (AF)
correlations. From the two carriers problem in the 2D t-J model, an effective
Hamiltonian for holes is defined with %no free parameters. This effective model
has superconductivity in the channel, a critical
temperature at the optimal hole density, ,
and a quasiparticle lifetime linearly dependent with energy. Other experimental
results are also reproduced by the theory.Comment: 12 pages, 4 figures (on request), RevTeX (version 3.0), preprint
NHMF
Low-Temperature Specific Heat of an Extreme-Type-II Superconductor at High Magnetic Fields
We present a detailed study of the quasiparticle contribution to the
low-temperature specific heat of an extreme type-II superconductor at high
magnetic fields. Within a T-matrix approximation for the self-energies in the
mixed state of a homogeneous superconductor, the electronic specific heat is a
linear function of temperature with a linear- coefficient
being a nonlinear function of magnetic field . In the range of magnetic
fields H\agt (0.15-0.2)H_{c2} where our theory is applicable, the calculated
closely resembles the experimental data for the borocarbide
superconductor YNiBC.Comment: 7 pages, 2 figures, to appear in Physical Review
Study protocol: Australasian Registry of Severe Cutaneous Adverse Reactions (AUS-SCAR)
Introduction Severe cutaneous adverse reactions (SCAR) are a group of T cell-mediated hypersensitivities associated with significant morbidity, mortality and hospital costs. Clinical phenotypes include Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS) and acute generalised exanthematous pustulosis (AGEP). In this Australasian, multicentre, prospective registry, we plan to examine the clinical presentation, drug causality, genomic predictors, potential diagnostic approaches, treatments and long-term outcomes of SCAR in Australia and New Zealand.
Methods and analysis Adult and adolescent patients with SCAR including SJS, TEN, DRESS, AGEP and another T cell-mediated hypersensitivity, generalised bullous fixed drug eruption, will be prospectively recruited. A waiver of consent has been granted for some sites to retrospectively include cases which result in early mortality. DNA will be collected for all prospective cases. Blood, blister fluid and skin biopsy sampling is optional and subject to patient consent and site capacity. To develop culprit drug identification and prevention, genomic testing will be performed to confirm human leukocyte antigen (HLA) type and ex vivo testing will be performed via interferon-γ release enzyme linked immunospot assay using collected peripheral blood mononuclear cells. The long-term outcomes of SCAR will be investigated with a 12-month quality of life survey and examination of prescribing and mortality data.
Ethics and dissemination This study was reviewed and approved by the Austin Health Human Research Ethics Committee (HREC/50791/Austin-19). Results will be published in peer-reviewed journals and presented at relevant conferences
Tomato: a crop species amenable to improvement by cellular and molecular methods
Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures.
In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
Lorentz breaking Effective Field Theory and observational tests
Analogue models of gravity have provided an experimentally realizable test
field for our ideas on quantum field theory in curved spacetimes but they have
also inspired the investigation of possible departures from exact Lorentz
invariance at microscopic scales. In this role they have joined, and sometime
anticipated, several quantum gravity models characterized by Lorentz breaking
phenomenology. A crucial difference between these speculations and other ones
associated to quantum gravity scenarios, is the possibility to carry out
observational and experimental tests which have nowadays led to a broad range
of constraints on departures from Lorentz invariance. We shall review here the
effective field theory approach to Lorentz breaking in the matter sector,
present the constraints provided by the available observations and finally
discuss the implications of the persisting uncertainty on the composition of
the ultra high energy cosmic rays for the constraints on the higher order,
analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on
"Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references
adde
Young and Intermediate-age Distance Indicators
Distance measurements beyond geometrical and semi-geometrical methods, rely
mainly on standard candles. As the name suggests, these objects have known
luminosities by virtue of their intrinsic proprieties and play a major role in
our understanding of modern cosmology. The main caveats associated with
standard candles are their absolute calibration, contamination of the sample
from other sources and systematic uncertainties. The absolute calibration
mainly depends on their chemical composition and age. To understand the impact
of these effects on the distance scale, it is essential to develop methods
based on different sample of standard candles. Here we review the fundamental
properties of young and intermediate-age distance indicators such as Cepheids,
Mira variables and Red Clump stars and the recent developments in their
application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in
Space Science Reviews (Chapter 3 of a special collection resulting from the
May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space
Age
- …