41,712 research outputs found

    Middle-out approaches to reform of university teaching and learning: Champions striding between the top-down and bottom-up approaches

    Get PDF
    In recent years, Australian universities have been driven by a diversity of external forces, including funding cuts, massification of higher education, and changing student demographics, to reform their relationship with students and improve teaching and learning, particularly for those studying off-campus or part-time. Many universities have responded to these forces either through formal strategic plans developed top-down by executive staff or through organic developments arising from staff in a bottom-up approach. By contrast, much of Murdoch University's response has been led by a small number of staff who have middle management responsibilities and who have championed the reform of key university functions, largely in spite of current policy or accepted practice. This paper argues that the "middle-out" strategy has both a basis in change management theory and practice, and a number of strengths, including low risk, low cost, and high sustainability. Three linked examples of middle-out change management in teaching and learning at Murdoch University are described and the outcomes analyzed to demonstrate the benefits and pitfalls of this approach

    Dynamical fluctuations in biochemical reactions and cycles

    Get PDF
    We develop theory for the dynamics and fluctuations in some cyclic and linear biochemical reactions. We use the approach of maximum caliber, which computes the ensemble of paths taken by the system, given a few experimental observables. This approach may be useful for interpreting single-molecule or few-particle experiments on molecular motors, enzyme reactions, ion-channels, and phosphorylation-driven biological clocks. We consider cycles where all biochemical states are observable. Our method shows how: (1) the noise in cycles increases with cycle size and decreases with the driving force that spins the cycle and (2) provides a recipe for estimating small-number features, such as probability of backward spin in small cycles, from experimental data. The back-spin probability diminishes exponentially with the deviation from equilibrium. We believe this method may also be useful for other few-particle nonequilibrium biochemical reaction systems

    Petiolate wings: effects on the leading-edge vortex in flapping flight

    Get PDF
    The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1–3. The wings were driven using a mechanical device, the ‘Flapperatus’, to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ* (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested.This work was supported by an EPSRC Career Acceleration Fellowship to R.J.B. (EP/H004025/1)

    The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing

    Get PDF
    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (cˉ\bar{c}). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5cˉ6.5\bar{c} (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR>1.5\mathrm{AR}\gt 1.5 around mid-stroke at ∼70%\sim 70\% span, and initiated sooner over higher aspect ratio wings. At AR>3\mathrm{AR}\gt 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR∼5,\mathrm{AR}\sim 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings

    Injection of clarity needed?

    Get PDF
    The legal status of children who stay in hospital for three months or longer gives rise to considerable confusion among managers in social services and social work departments. And the number of young people affected is significant. NHS statistics for the year ending 31 March 2000 suggest that in England around 2,800 children aged 0-19 on admission were discharged after spending more than two months in hospital, as were more than 500 children in Scotland. (A small number of these would have been discharged as adults.) A two-year study, commissioned by the Joseph Rowntree Foundation1 and carried out by the universities of Stirling, Durham, Newcastle and York, investigated the numbers, characteristics and circumstances of children and young people with complex needs who spend long periods in health care settings. Interviews were conducted in England and Scotland with 11 social services or health managers responsible for these children. The findings show a worrying degree of uncertainty about the position of young people who find themselves in a hospital or other health care setting for at least three months. One social services manager believed such children become looked after under the terms of the Children Act 1989. Another said children are not formally looked after but nevertheless receive the same services and safeguards as those who are. One Scottish social work manager did not know whether children going into health care settings for short-term (respite) care are looked after or not. And discussion with the research team's advisory group indicated that the confusion is not confined to our fieldwork areas

    Experiment K-6-17. Structural changes and cell turnover in the rats small intestine induced by spaceflight

    Get PDF
    The purpose of this project was to test the hypothesis that the generalized, whole body decrease in synthetic activity associated with microgravity conditions of space flight as evidenced by negative nitrogen balance and muscle atrophy (Nicogossian and Parker, 1982; Oganov, 1981), as well as inhibited lymphocyte proliferation (Bechler and Cogoli, 1986), would be evident in cells characterized by a rapid rate of turnover. As a model, researchers chose to study the turnover of mucosal cells lining the jejunum of the small intestine, since these cells are among the most rapidly proliferating in the body. Under normal conditions, epithelial cells that line the small intestine are continually produced in the crypts of Lieberkuhn. These cells migrate out of the crypts onto intestinal villi, are progressively pushed up the villus as new crypt cells are formed, and ultimately reach the tip of villi where they are then descquamated. In rats, the entire process, from initial proliferation in crypts to desquamation, takes approximately 2 days (Cairnie et al., 1965; Lipkin, 1973). In this study, researchers determined the mitotic index for mucosal cells lining the proximal, middle, and distal regions of the jejunum in rats from three treatment groups (synchronous control, vivarium control and flight), and measured the depth of the crypts of Lieberkuhn and the length of villi present in each of the three jejunal regions sampled

    Diffusive Atomistic Dynamics of Edge Dislocations in Two Dimensions

    Full text link
    The fundamental dislocation processes of glide, climb, and annihilation are studied on diffusive time scales within the framework of a continuum field theory, the Phase Field Crystals (PFC) model. Glide and climb are examined for single edge dislocations subjected to shear and compressive strain, respectively, in a two dimensional hexagonal lattice. It is shown that the natural features of these processes are reproduced without any explicit consideration of elasticity theory or ad hoc construction of microscopic Peierls potentials. Particular attention is paid to the Peierls barrier for dislocation glide/climb and the ensuing dynamic behavior as functions of strain rate, temperature, and dislocation density. It is shown that the dynamics are accurately described by simple viscous motion equations for an overdamped point mass, where the dislocation mobility is the only adjustable parameter. The critical distance for the annihilation of two edge dislocations as a function of separation angle is also presented.Comment: 13 pages with 17 figures, submitted to Physical Review
    • …
    corecore