230 research outputs found
Recommended from our members
The effect of winter feed levels on steer production
Published May 1980. Facts and recommendations in this publication may no longer be valid. Please look for up-to-date information in the OSU Extension Catalog: http://extension.oregonstate.edu/catalo
Recommended from our members
Effect of Geochemical and Physical Heterogeneity on the Hanford 100D Area In Situ Redox Manipulation Barrier Longevity
The purpose of this study was to quantify the influence of physical and/or geochemical heterogeneities in the Hanford 100D area In Situ Redox Manipulation (ISRM) barrier, which may be contributing to the discontinuous chromate breakthrough locations along the 65-well (2,300 ft long) barrier. Possible causes of chromate breakthrough that were investigated during this study include: (1) high hydraulic conductivity zones; (2) zones of low reducible iron; and (3) high hydraulic conductivity zones with low reducible iron. This laboratory-scale investigation utilized geochemical and physical characterization data collected on 0.5 to 1 foot intervals from four borehole locations. Results of this laboratory study did not provide definitive support any of the proposed hypotheses for explaining chromate breakthrough at the Hanford 100-D Area ISRM barrier. While site characterization data indicate a significant degree of vertical variability in both physical and geochemical properties in the four boreholes investigated, lateral continuity of high conductivity/low reductive capacity zones was not observed. The one exception was at the water table, where low reductive capacity and high-K zones were observed in 3 of four boreholes. Laterally continuous high permeability zones that contain oxic sediment near the water table is the most likely explanation for high concentration chromium breakthrough responses observed at various locations along the barrier. A mechanism that could explain partial chromate breakthrough in the ISRM barrier is the relationship between the field reductive capacity and the rate of chromate oxidation. Subsurface zones with low reductive capacity still have sufficient ferrous iron mass to reduce considerable chromate, but the rate of chromate reduction slows by 1 to 2 orders of magnitude relative to sediments with moderate to high reductive capacity. The original barrier longevity estimate of 160 pore volumes for homogeneous reduced sediment, or approximately 20 years, (with 5 mg/L dissolved oxygen and 2 ppm chromate) is reduced to 85 pore volumes (10 years) when the wide spread 60 ppm nitrate plume is included in the calculation. However, this reduction in barrier lifetime is not as great for high permeability channels, as there is insufficient time to reduce nitrate (and consume ferrous iron). If the cause of laterally discontinuous breakthrough of chromate along the ISRM barrier is due to oxic transport of chromate near the water table, additional dithionite treatment in these zones will not be effective. Treatment near the water table with a technology that emplaces considerable reductive capacity is needed, such as injectable zero valent iron
On-sky speckle nulling through a single-mode fiber with the Keck Planet Imager and Characterizer
The Keck Planet Imager and Characterizer (KPIC) is an instrument at the Keck
II telescope that enables high-resolution spectroscopy of directly imaged
exoplanets and substellar companions. KPIC uses single-mode fibers to couple
the adaptive optics system to Keck's near-infrared spectrometer (NIRSPEC).
However, KPIC's sensitivity at small separations is limited by the leakage of
stellar light into the fiber. Speckle nulling uses a deformable mirror to
destructively interfere starlight with itself, a technique typically used to
reduce stellar signal on a focal-plane imaging detector. We present the first
on-sky demonstration of speckle nulling through an optical fiber with KPIC,
using NIRSPEC to collect exposures that measure speckle phase for
quasi-real-time wavefront control while also serving as science data. We repeat
iterations of measurement and correction, each using at least 5 exposures. We
show a decrease in the on-sky leaked starlight by a factor of 2.6 to 2.8 in the
targeted spectral order, at a spatial separation of 2.0 {\lambda}/D in K-band.
This corresponds to an estimated factor of 2.6 to 2.8 decrease in the required
exposure time to reach a given SNR, relative to conventional KPIC observations.
The performance of speckle nulling is limited by instability in the speckle
phase: when the loop is opened, the null-depth degrades by a factor of 2 on the
timescale of a single phase measurement, which would limit the suppression that
can be achieved. Future work includes exploring gradient-descent methods, which
may be faster and thereby able to achieve deeper nulls. In the meantime, the
speckle nulling algorithm demonstrated in this work can be used to decrease
stellar leakage and improve the signal-to-noise of science observations.Comment: 18 pages, 4 figure
COVID-19 in cardiac arrest and infection risk to rescuers : a systematic review
Background
There may be a risk of COVID-19 transmission to rescuers delivering treatment for cardiac arrest. The aim of this review was to identify the potential risk of transmission associated with key interventions (chest compressions, defibrillation, cardiopulmonary resuscitation) to inform international treatment recommendations.
Methods
We undertook a systematic review comprising three questions: (1) aerosol generation associated with key interventions; (2) risk of airborne infection transmission associated with key interventions; and (3) the effect of different personal protective equipment strategies. We searched MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and the World Health Organization COVID-19 database on 24th March 2020. Eligibility criteria were developed individually for each question. We assessed risk of bias for individual studies, and used the GRADE process to assess evidence certainty by outcome.
Results
We included eleven studies: two cohort studies, one case control study, five case reports, and three manikin randomised controlled trials. We did not find any direct evidence that chest compressions or defibrillation either are or are not associated with aerosol generation or transmission of infection. Data from manikin studies indicates that donning of personal protective equipment delays treatment delivery. Studies provided only indirect evidence, with no study describing patients with COVID-19. Evidence certainty was low or very low for all outcomes.
Conclusion
It is uncertain whether chest compressions or defibrillation cause aerosol generation or transmission of COVID-19 to rescuers. There is very limited evidence and a rapid need for further studies
Recommended from our members
Treatability Study of In Situ Technologies for Remediation of Hexavalent Chromium in Groundwater at the Puchack Well Field Superfund Site, New Jersey
This treatability study was conducted by Pacific Northwest National Laboratory (PNNL), at the request of the U. S. Environmental Protection Agency (EPA) Region 2, to evaluate the feasibility of using in situ treatment technologies for chromate reduction and immobilization at the Puchack Well Field Superfund Site in Pennsauken Township, New Jersey. In addition to in situ reductive treatments, which included the evaluation of both abiotic and biotic reduction of Puchack aquifer sediments, natural attenuation mechanisms were evaluated (i.e., chromate adsorption and reduction). Chromate exhibited typical anionic adsorption behavior, with greater adsorption at lower pH, at lower chromate concentration, and at lower concentrations of other competing anions. In particular, sulfate (at 50 mg/L) suppressed chromate adsorption by up to 50%. Chromate adsorption was not influenced by inorganic colloids
Medical Students Educate Teens About Skin Cancer: What Have We Learned?
Skin cancer is a serious societal problem, and public awareness outreach, including to youth, is crucial. Medical students have joined forces to educate adolescents about skin cancer with significant impacts; even one 50-min interactive outreach session led to sustained changes in knowledge and behavior in a cohort of 1,200 adolescents surveyed. Medical students can act as a tremendous asset to health awareness public outreach efforts: enthusiastic volunteerism keeps education cost-effective, results in exponential spread of information, reinforces knowledge and communication skills of future physicians, and can result in tangible, life-saving benefits such as early detection of melanoma
Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments
This investigation is focused on refining an in situ technology for vadose zone remediation of uranium by the addition of ammonia (NH3) gas. Objectives are to: a) refine the technique of ammonia gas treatment of low water content sediments to minimize uranium mobility by changing uranium surface phases (or coat surface phases), b) identify the geochemical changes in uranium surface phases during ammonia gas treatment, c) identify broader geochemical changes that occur in sediment during ammonia gas treatment, and d) predict and test injection of ammonia gas for intermediate-scale systems to identify process interactions that occur at a larger scale and could impact field scale implementation.Overall, NH3 gas treatment of low-water content sediments appears quite effective at decreasing aqueous, adsorbed uranium concentrations. The NH3 gas treatment is also fairly effective for decreasing the mobility of U-carbonate coprecipitates, but shows mixed success for U present in Na-boltwoodite. There are some changes in U-carbonate surface phases that were identified by surface phase analysis, but no changes observed for Na-boltwoodite. It is likely that dissolution of sediment minerals (predominantly montmorillonite, muscovite, kaolinite) under the alkaline conditions created and subsequent precipitation as the pH returns to natural conditions coat some of the uranium surface phases, although a greater understanding of these processes is needed to predict the long term impact on uranium mobility. Injection of NH3 gas into sediments at low water content (1% to 16% water content) can effectively treat a large area without water addition, so there is little uranium mobilization (i.e., transport over cm or larger scale) during the injection phase
Recommended from our members
Hanford 100N Area Apatite Emplacement: Laboratory Results of Ca-Citrate-PO4 Solution Injection and Sr-90 Immobilization in 100N Sediments
This report summarizes laboratory scale studies investigating the remediation of Sr-90 by Ca-citrate-PO4 solution injection/infiltration to support field injection activities in the Hanford 100N area. This study is focused on experimentally testing whether this remediation technology can be effective under field scale conditions to mitigate Sr-90 migration 100N area sediments into the Columbia River. Sr-90 is found primarily adsorbed to sediments by ion exchange (99% adsorbed, < 1% in groundwater) in the upper portion of the unconfined aquifer and lower vadose zone. Although primarily adsorbed, Sr-90 is still considered a high mobility risk as it is mobilized by seasonal river stage increases and by plumes of higher ionic strength relative to groundwater. This remediation technology relies upon the Ca-citrate-PO4 solution forming apatite precipitate [Ca6(PO4)10(OH)2], which incorporates some Sr-90 during initial precipitation and additionally slowly incorporates Sr-90 by solid phase substitution for Ca. Sr substitution occurs because Sr-apatite is thermodynamically more stable than Ca-apatite. Once the Sr-90 is in the apatite structure, Sr-90 will decay to Y-90 (29.1 y half-life) then Zr-90 (64.1 h half-life) without the potential for migration into the Columbia River. For this technology to be effective, sufficient apatite needs to be emplaced in sediments to incorporate Sr and Sr-90 for 300 years (~10 half-lives of Sr-90), and the rate of incorporation needs to exceed the natural groundwater flux rate of Sr in the 100N area. A primary objective of this study is to supply an injection sequence to deliver sufficient apatite into subsurface sediments that minimizes initial mobility of Sr-90, which occurs because the injection solution has a higher ionic strength compared to groundwater. This can be accomplished by sequential injections of low, then high concentration injection of Ca-citrate-PO4 solutions. Assessment of low concentration Ca-citrate-PO4, citrate-PO4, and PO4 solutions show greater Sr and Sr-90 incorporation during initial precipitation and less initial mobilization with solutions with low Ca2+ concentration. While all solutions showed nearly the same Sr uptake into apatite (14 to 17% by 2 weeks, 21% to 30% by 5 weeks), the incorporation efficiency (i.e., mM Sr incorporated per mM PO4 injected) was higher for solutions containing citrate. The Sr incorporation rate into apatite during initial precipitation (by 1 month) averaged 4.64 ± 1.9 x 10-4 h-1 (half-life 1500 ± 430 h, 8.85 x 10-7 mg Sr/day/mg apatite). The injection solution used in field injections #3 to #18 (10 mM PO4, 1 mM Ca, 2.5 mM citrate), which is deficient in Ca (a total of 16.7 mM needed to form apatite with 10 mM of PO4), resulted in the initial Sr and Ca peak (24 h) at 4.7x groundwater. By 30 days, the aqueous Sr concentration was 0.28x groundwater and Ca 0.43x groundwater, as both Sr and Ca are used to form initial apatite precipitates. Reactive transport simulation of the complex ion exchange, biodegradation, and precipitation processes showed that the initial Sr groundwater increase mobilized only 1.5% of the Sr mass in sediments. Citrate biodegradation, a necessary step in Ca-citrate-PO4 solutions forming apatite, had an average half-life of 50 h (at aquifer sediment/water ratio and temperature), and decreased an order of magnitude with sediment depth as the microbial biomass decreased five orders of magnitude. The rate of citrate biodegradation was relatively invariant with biomass and water saturation (50% to 100%, for vadose zone infiltration) possibly due to significant microbial injection using river water and subsurface microbial mobilization
Recommended from our members
SERDP ER-1376 Enhancement of In Situ Bioremediation of Energetic Compounds by Coupled Abiotic/Biotic Processes:Final Report for 2004 - 2006
This project was initiated by SERDP to quantify processes and determine the effectiveness of abiotic/biotic mineralization of energetics (RDX, HMX, TNT) in aquifer sediments by combinations of biostimulation (carbon, trace nutrient additions) and chemical reduction of sediment to create a reducing environment. Initially it was hypothesized that a balance of chemical reduction of sediment and biostimulation would increase the RDX, HMX, and TNT mineralization rate significantly (by a combination of abiotic and biotic processes) so that this abiotic/biotic treatment may be a more efficient for remediation than biotic treatment alone in some cases. Because both abiotic and biotic processes are involved in energetic mineralization in sediments, it was further hypothesized that consideration for both abiotic reduction and microbial growth was need to optimize the sediment system for the most rapid mineralization rate. Results show that there are separate optimal abiotic/biostimulation aquifer sediment treatments for RDX/HMX and for TNT. Optimal sediment treatment for RDX and HMX (which have chemical similarities and similar degradation pathways) is mainly chemical reduction of sediment, which increased the RDX/HMX mineralization rate 100 to150 times (relative to untreated sediment), with additional carbon or trace nutrient addition, which increased the RDX/HMX mineralization rate an additional 3 to 4 times. In contrast, the optimal aquifer sediment treatment for TNT involves mainly biostimulation (glucose addition), which stimulates a TNT/glucose cometabolic degradation pathway (6.8 times more rapid than untreated sediment), degrading TNT to amino-intermediates that irreversibly sorb (i.e., end product is not CO2). The TNT mass migration risk is minimized by these transformation reactions, as the triaminotoluene and 2,4- and 2,6-diaminonitrotoluene products that irreversibly sorb are no longer mobile in the subsurface environment. These transformation rates are increased 13 times further by chemical reduction of sediment. Dithionite reduction alone is not an effective treatment for TNT (intermediates that irreversibly sorb are not produced), even though the TNT degradation rate (to 2- or 4-aminodinitrotoluene) increases
Validation of elemental and isotopic abundances in late-M spectral types with the benchmark HIP 55507 AB system
M dwarfs are common host stars to exoplanets but often lack atmospheric
abundance measurements. Late-M dwarfs are also good analogs to the youngest
substellar companions, which share similar . We
present atmospheric analyses for the M7.5 companion HIP 55507 B and its K6V
primary star with Keck/KPIC high-resolution () band
spectroscopy. First, by including KPIC relative radial velocities between the
primary and secondary in the orbit fit, we improve the dynamical mass precision
by 60% and find , putting HIP 55507 B
above the stellar-substellar boundary. We also find that HIP 55507 B orbits its
K6V primary star with AU and . From atmospheric
retrievals of HIP 55507 B, we measure , , and . Moreover, we strongly detect
( significance) and tentatively detect
( significance) in companion's atmosphere, and measure and
after accounting for systematic errors. From a simplified retrieval analysis of
HIP 55507 A, we measure and for the primary star. These results
demonstrate that HIP 55507 A and B have consistent and
to the level, as expected for a chemically
homogeneous binary system. Given the similar flux ratios and separations
between HIP 55507 AB and systems with young, substellar companions, our results
open the door to systematically measuring and
abundances in the atmospheres of substellar or even planetary-mass companions
with similar spectral types.Comment: Accepted to ApJ, 28 pages, 14 figure
- …