33,695 research outputs found

    Curvature Constraints from the Causal Entropic Principle

    Full text link
    Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The Causal Entropic Principle (Bousso, {\it et al}.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the Causal Entropic Principle to predict the preferred curvature within the "multiverse". We have found that values larger than ρk=40ρm\rho_k = 40\rho_m are disfavored by more than 99.99% and a peak value at ρΛ=7.9×10123\rho_{\Lambda} = 7.9 \times 10^{-123} and ρk=4.3ρm\rho_k =4.3 \rho_m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.Comment: 5 pages, 3 Figure

    Quantum condensation from a tailored exciton population in a microcavity

    Full text link
    An experiment is proposed, on the coherent quantum dynamics of a semiconductor microcavity containing quantum dots. Modeling the experiment using a generalized Dicke model, we show that a tailored excitation pulse can create an energy-dependent population of excitons, which subsequently evolves to a quantum condensate of excitons and photons. The population is created by a generalization of adiabatic rapid passage, and then condenses due to a dynamical analog of the BCS instability.Comment: 5 pages, 3 figures. Version 2 is extensively rewritten, and incorporates some new results in further support of our claim

    Quenching of Impurity Spins at Cu/CuO Interfaces: An Antiferromagnetic Proximity Effect

    Full text link
    It is observed that the magnetoconductance of bilayer films of copper (Cu) and copper monoxide (CuO) has distinct features compared of that of Cu films on conventional band insulator substrates. We analyze the data above 2 K by the theory of weak antilocalization in two-dimensional metals and suggest that spin-flip scatterings by magnetic impurities inside Cu are suppressed in Cu/CuO samples. Plausibly the results imply a proximity effect of antiferromagnetism inside the Cu layer, which can be understood in the framework of Ruderman-Kittel-Kasuya-Yoshida (RKKY) interactions. The data below 1 K, which exhibit slow relaxation reminiscent of spin glass, are consistent with this interpretation.Comment: 6 pages, 4 figures, 2 tables. Added a supplementary materia

    Search for Rapid Changes in the Visible-Light Corona during the 21 June 2001 Total Solar Eclipse

    Full text link
    Some 8000 images obtained with the SECIS fast-frame CCD camera instrument located at Lusaka, Zambia, during the total eclipse of 21 June 2001 have been analyzed to search for short-period oscillations in intensity that could be a signature of solar coronal heating mechanisms by MHD wave dissipation. Images were taken in white- light and Fe XIV green-line (5303 A) channels over 205 seconds (frame rate 39 s-1), approximately the length of eclipse totality at this location, with a pixel size of four arcseconds square. The data are of considerably better quality than were obtained during the 11 August 1999 total eclipse, observed by us (Rudawy et al.: Astron. Astrophys. 416, 1179, 2004), in that the images are much better exposed and enhancements in the drive system of the heliostat used gave a much improved image stability. Classical Fourier and wavelet techniques have been used to analyze the emission at 29518 locations, of which 10714 had emission at reasonably high levels, searching for periodic fluctuations with periods in the range 0.1-17 seconds (frequencies 0.06-10 Hz). While a number of possible periodicities were apparent in the wavelet analysis, none of the spatially and time-limited periodicities in the local brightness curves was found to be physically important. This implies that the pervasive Alfven wave-like phenomena (Tomczyk et al.: Science 317, 1192, 2007) using polarimetric observations with the CoMP instrument do not give rise to significant oscillatory intensity fluctuations.Comment: Accepted by Solar Physics; 16 figure

    Chiral effective theory predictions for deuteron form factor ratios at low Q^2

    Get PDF
    We use chiral effective theory to predict the deuteron form factor ratio G_C/G_Q as well as ratios of deuteron to nucleon form factors. These ratios are calculated to next-to-next-to-leading order. At this order the chiral expansion for the NN isoscalar charge operator (including consistently calculated 1/M corrections) is a parameter-free prediction of the effective theory. Use of this operator in conjunction with NLO and NNLO chiral effective theory wave functions produces results that are consistent with extant experimental data for Q^2 < 0.35 GeV^2. These wave functions predict a deuteron quadrupole moment G_Q(Q^2=0)=0.278-0.282 fm^2-with the variation arising from short-distance contributions to this quantity. The variation is of the same size as the discrepancy between the theoretical result and the experimental value. This motivates the renormalization of G_Q via a two-nucleon operator that couples to quadrupole photons. After that renormalization we obtain a robust prediction for the shape of G_C/G_Q at Q^2 < 0.3 GeV^2. This allows us to make precise, model-independent predictions for the values of this ratio that will be measured at the lower end of the kinematic range explored at BLAST. We also present results for the ratio G_C/G_M.Comment: 31 pages, 7 figure

    VLA OH and H I Zeeman Observations of the NGC 6334 Complex

    Get PDF
    We present OH and H I Zeeman observations of the NGC 6334 complex taken with the Very Large Array. The OH absorption profiles associated with the complex are relatively narrow (del-v_FWHM ~ 3 km s^1) and single-peaked over most of the sources. The H I absorption profiles contain several blended velocity components. One of the compact continuum sources in the complex (source A) has a bipolar morphology. The OH absorption profiles toward this source display a gradient in velocity from the northern continuum lobe to the southern continuum lobe; this velocity gradient likely indicates a bipolar outflow of molecular gas from the central regions to the northern and southern lobes. Magnetic fields of the order of 200 microG have been detected toward three discrete continuum sources in the complex. Virial estimates suggest that the detected magnetic fields in these sources are of the same order as the critical magnetic fields required to support the molecular clouds associated with the sources against gravitational collapse.Comment: 14 pages, 9 postscript figures, accepted for publication in the Astrophysical Journal (ApJ), tentatively scheduled for vol. 533, Apr. 20, 2000; also available at http://www.pa.uky.edu/~sarma/RESEARCH/aps_research.htm

    Molecular orientational dynamics of the endohedral fullerene Sc3_{3}N@C80_{80} as probed by 13^{13}C and 45^{45}Sc NMR

    Get PDF
    We measure 13C and 45Sc NMR lineshapes and spin-lattice relaxation times (T1) to probe the orientational dynamics of the endohedral metallofullerene Sc3N@C80. The measurements show an activated behavior for molecular reorientations over the full temperature range with a similar behavior for the temperature dependence of the 13C and 45Sc data. Combined with spectral data from Magic Angle Spinning (MAS) NMR, the measurements can be interpreted to mean the motion of the encapsulated Sc3N molecule is independent of that of the C80 cage, although this requires the similar temperature dependence of the 13C and 45Sc spin-lattice relaxation times to be coincidental. For the Sc3N to be fixed to the C80 cage, one must overcome the symmetry breaking effect this has on the Sc3N@C80 system since this would result in more than the observed two 13C lines.Comment: 6 pages, 5 figure

    Space Shuttle Orbiter trimmed center-of-gravity extension study. Volume 9: Effects of configuration modifications on the aerodynamic characteristics of the 140 A/B Orbiter at Mach numbers of 1.5, 2.0, and 2.5

    Get PDF
    Wind-tunnel tests were conducted at Mach 1.5 to 2.5 to determine the effect of modifications designed to extend the forward center-of-gravity trim capability on the static longitudal and lateral directional characteristics of a Space shuttle 140 A/B orbiter model (0.01 scale). The modifications consisted of a forward-extended wing fillet, a flat plate canard, and a blended canard. The investigation was conducted in the low Mach number test section of the Langley unitary plan wind tunnel at a Reynolds number of approximately 2.15 million based on the fuselage reference length. The test angle of attack range was -1 deg to 32 deg and the sideslip angles were 0 deg and 5 deg

    Fatigue crack initiation and small crack growth in several airframe alloys

    Get PDF
    The growth of naturally-initiated small cracks under a variety of constant amplitude and variable amplitude load sequences is examined for several airframe materials: the conventional aluminum alloys, 2024-T3 and 7075-T6, the aluminum-lithium alloy, 2090-T8E41, and 4340 steel. Loading conditions investigated include constant amplitude loading at R = 0.5, 0, -1 and -2 and the variable amplitude sequences FALSTAFF, Mini-TWIST and FELIX/28. Crack growth was measured at the root of semicircular edge notches using acetate replicas. Crack growth rates are compared on a stress intensity factor basis, to those for large cracks to evaluate the extent of the small crack effect in each alloy. In addition, the various alloys are compared on a crack initiation and crack growth morphology basis
    corecore