170 research outputs found

    Mott transition in the π\pi-flux SU(44) Hubbard model on a square lattice

    Full text link
    We employ the projector quantum Monte Carlo simulations to study the ground-state properties of the square-lattice SU(4) Hubbard model with a π\pi flux per plaquette. In the weak coupling regime, its ground state is in the gapless Dirac semi-metal phase. With increasing repulsive interaction, we show that, a Mott transition occurs from the semimetal to the valence bond solid, accompanied by the Z4Z_4 discrete symmetry breaking. Our simulations demonstrate the existence of a second-order phase transition, which confirms the Ginzburg-Landau analysis. The phase transition point and the critical exponent η\eta are also estimated. To account for the effect of a π\pi flux on the ordering in the strong coupling regime, we analytically derive by the perturbation theory the ring-exchange term which describes the leading-order difference between the π\pi-flux and zero-flux SU(4) Hubbard models.Comment: 8 pages, 9 figure

    Monoclonal Antibodies to the V2 Domain of MN-rgp120: Fine Mapping of Epitopes and Inhibition of α4β7 Binding

    Get PDF
    BACKGROUND: Recombinant gp120 (MN-rgp120) was a major component of the AIDSVAX B/E vaccine used in the RV144 trial. This was the first clinical trial to show that vaccination could prevent HIV infection in humans. A recent RV144 correlates of protection study found that protection correlated with the presence of antibodies to the V2 domain. It has been proposed that antibodies to the α4β7 binding site in the V2 domain might prevent HIV-1 infection by blocking the ability of virions to recognize α4β7 on activated T-cells. In this study we investigated the specificity of monoclonal antibodies (MAbs) to the V2 domain of MN-rgp120 and examined the possibility that these antibodies could inhibit the binding of MN-rgp120 to the α4β7 integrin. METHODOLOGY/PRINCIPAL FINDINGS: Nine MAbs to the V2 domain were isolated from mice immunized with recombinant envelope proteins. The ability of these MAbs to inhibit HIV infection, block the binding of gp120 to CD4, and block the binding of MN-rgp120 to the α4β7 integrin was measured. Mutational analysis showed that eight of the MAbs recognized two immunodominant clusters of amino acids (166-168 and 178-183) located at either end of the C strand within the four-strand anti-parallel sheet structure comprising the V1/V2 domain. CONCLUSIONS/SIGNIFICANCE: These studies showed that the antigenic structure of the V2 domain is exceedingly complex and that MAbs isolated from mice immunized with MN-rgp120 exhibited a high level of strain specificity compared to MAbs to the V2 domain isolated from HIV-infected humans. We found that immunization with MN-rgp120 readily elicits antibodies to the V2 domain and some of these were able to block the binding of MN-rgp120 to the α4β7 integrin

    Ethnic differences in the adaptation rate of HIV gp120 from a vaccine trial

    Get PDF
    Differences in HIV-1 gp120 sequence variation were examined in North American volunteers who became infected during a phase III vaccine trial using the rgp120 vaccine. Molecular adaptation of the virus in vaccine and placebo recipients from different ethnic subgroups was compared by estimating the d(N)/d(S )ratios in viruses sampled from each individual using three different methods. ANOVA analyses detected significant differences in d(N)/d(S )ratios among races (P < 0.02). gp120 sequences from the black individuals showed higher mean d(N)/d(S )ratios for all estimators (1.24–1.45) than in other races (0.66–1.35), and several pairwise comparisons involving blacks remained significant (P < 0.05) after correction for multiple tests. In addition, black-placebo individuals showed significantly (P < 0.02) higher mean d(N)/d(S )ratios (1.3–1.66) than placebo individuals from the other races (0.65–1.56). These results suggest intrinsic differences among races in immune response and highlight the need for including multiple ethnicities in the design of future HIV-1 vaccine studies and trials

    Comparative Immunogenicity of HIV-1 Clade C Envelope Proteins for Prime/Boost Studies

    Get PDF
    BACKGROUND: Previous clinical efficacy trials failed to support the continued development of recombinant gp120 (rgp120) as a candidate HIV vaccine. However, the recent RV144 HIV vaccine trial in Thailand showed that a prime/boost immunization strategy involving priming with canarypox vCP1521 followed by boosting with rgp120 could provide significant, although modest, protection from HIV infection. Based on these results, there is renewed interest in the development of rgp120 based antigens for follow up vaccine trials, where this immunization approach can be applied to other cohorts at high risk for HIV infection. Of particular interest are cohorts in Africa, India, and China that are infected with clade C viruses. METHODOLOGY/PRINCIPAL FINDINGS: A panel of 10 clade C rgp120 envelope proteins was expressed in 293 cells, purified by immunoaffinity chromatography, and used to immunize guinea pigs. The resulting sera were collected and analyzed in checkerboard experiments for rgp120 binding, V3 peptide binding, and CD4 blocking activity. Virus neutralization studies were carried out with two different assays and two different panels of clade C viruses. A high degree of cross reactivity against clade C and clade B viruses and viral proteins was observed. Most, but not all of the immunogens tested elicited antibodies that neutralized tier 1 clade B viruses, and some sera neutralized multiple clade C viruses. Immunization with rgp120 from the CN97001 strain of HIV appeared to elicit higher cross neutralizing antibody titers than the other antigens tested. CONCLUSIONS/SIGNIFICANCE: While all of the clade C antigens tested were immunogenic, some were more effective than others in eliciting virus neutralizing antibodies. Neutralization titers did not correlate with rgp120 binding, V3 peptide binding, or CD4 blocking activity. CN97001 rgp120 elicited the highest level of neutralizing antibodies, and should be considered for further HIV vaccine development studies

    Longitudinal population analysis of dual infection with recombination in two strains of HIV type 1 subtype B in an individual from a phase 3 HIV vaccine efficacy trial

    Get PDF
    This study documents a case of coinfection (simultaneous infection of an individual with two or more strains) of two HIV-1 subtype B strains in an individual from a Phase 3 HIV-1 vaccine efficacy trial, conducted in North American and the Netherlands. We examined 86 full-length gp120 (env) gene sequences from this individual collected from nine different time points over a 20-month period. We estimated evolutionary relationships using maximum likelihood and Bayesian methods and inferred recombination breakpoints and recombinant sequences using phylogenetic and substitutional methods. These analyses identified two strongly supported monophyletic clades (clades A and B) of 14 and 69 sequences each and a small paraphyletic recombinant clade of three sequences. We then studied the genetic characteristics of these lineages by comparing estimates of genetic diversity generated by mutation and recombination and adaptive selection within a coalescent and maximum likelihood framework. Our results suggest significant differences on the evolutionary dynamics of these strains. We then discuss the implications of these results for vaccine development

    Unusual Cysteine Content in V1 Region of gp120 From an Elite Suppressor That Produces Broadly Neutralizing Antibodies

    Get PDF
    Although it is now possible to produce recombinant HIV envelope glycoproteins (Envs) with epitopes recognized by the 5–6 major classes of broadly neutralizing antibodies (bNAbs), these have failed to consistently stimulate the formation of bNAbs in immunized animals or humans. In an effort to identify new immunogens better able to elicit bNAbs, we are studying Envs derived from rare individuals who possess bNAbs and are able to control their infection without the need for anti-retroviral drugs (elite supressors or ES), hypothesizing that in at least some people the antibodies may mediate durable virus control. Because virus evolution in people with the ES only phenotype was reported to be limited, we reasoned the Env proteins recovered from these individuals may more closely resemble the Envs that gave rise to bNAbs compared to the highly diverse viruses isolated from normal progressors. Using a phenotypic assay, we screened 25 controllers and identified two for more detailed investigation. In this study, we examined 20 clade B proviral sequences isolated from an African American woman, who had the rare bNAb/ES phenotype. Phylogenetic analysis of proviral envelope sequences demonstrated low genetic diversity. Envelope proteins were unusual in that most possessed two extra cysteines within an elongated V1 region. In this report, we examine the impact of the extra cysteines on the binding to bNAbs, virus infectivity, and sensitivity to neutralization. These data suggest structural motifs in V1 can affect infectivity, and that rare viruses may be prevented from developing escape

    Development of a Stable MGAT1− CHO Cell Line to Produce Clade C gp120 With Improved Binding to Broadly Neutralizing Antibodies

    Get PDF
    The high rate of new HIV infections, particularly in Sub-Saharan Africa, emphasizes the need for a safe and effective vaccine to prevent acquired immunodeficiency syndrome (AIDS). To date, the only HIV vaccine trial that has exhibited protective efficacy in humans was the RV144 study completed in Thailand. The finding that protection correlated with antibodies to gp120 suggested that increasing the quality or magnitude of the antibody response that recognize gp120 might improve the modest yet significant protection (31.2%) achieved with this immunization regimen. However, the large-scale production of rgp120 suitable for clinical trials has been challenging due, in part, to low productivity and difficulties in purification. Moreover, the antigens that are currently available were produced largely by the same technology used in the early 1990s and fail to incorporate unique carbohydrates presented on HIV virions required for the binding of several major families of broadly neutralizing antibodies (bNAbs). Here we describe the development of a high-yielding CHO cell line expressing rgp120 from a clade C isolate (TZ97008), representative of the predominant circulating HIV subtype in Southern Africa and Southeast Asia. This cell line, produced using robotic selection, expresses high levels (1.2 g/L) of the TZ97008 rgp120 antigen that incorporates oligomannose glycans required for binding to multiple glycan dependent bNAbs. The resulting rgp120 displays a lower degree of net charge and glycoform heterogeneity as compared to rgp120s produced in normal CHO cells. This homogeneity in net charge facilitates purification by filtration and ion exchange chromatography methods, eliminating the need for expensive custom-made lectin, or immunoaffinity columns. The results described herein document the availability of a novel cell line for the large-scale production of clade C gp120 for clinical trials. Finally, the strategy used to produce a TZ97008 gp120 in the MGAT− CHO cell line can be applied to the production of other candidate HIV vaccines
    • …
    corecore