37 research outputs found

    Glutamate Uptake into Synaptic Vesicles: Competitive Inhibition by Bromocriptine

    Full text link
    The ATP-dependent uptake of l-glutamate into synaptic vesicles has been well characterized, implicating a key role for synaptic vesicles in glutamatergic neurotransmission. In the present study, we provide evidence that vesicular glutamate uptake is selectively inhibited by the pep-tide-containing halogenated ergot bromocriptine. It is the most potent inhibitor of the agents tested; the IC 5 o was de-termined to be 22 Îś M . The uptake was also inhibited by other ergopeptines such as ergotamine and ergocristine, but with less potency. Ergots devoid of the peptide moiety, however, such as ergonovine, lergotrile, and methysergide, had little or no effect. Although bromocriptine is known to elicit dopaminergic and serotonergic effects, its inhibitory effect on vesicular glutamate uptake was not mimicked by agents known to interact with dopamine and serotonin receptors. Kinetic data suggest that bromocriptine competes with glutamate for the glutamate binding site on the glutamate trans-locator. It is proposed that this inhibitor could be useful as a prototype probe in identifying and characterizing the vesicular glutamate translocator, as well as in developing a more specific inhibitor of the transport system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66274/1/j.1471-4159.1989.tb09258.x.pd

    Synaptic Vesicular Glutamate Uptake: Modulation by a Synaptosomal Cytosolic Factor

    Full text link
    We have demonstrated previously that L-glutamate is taken up into isolated synaptic vesicles in an ATP-dependent manner, supporting the neurotransmitter role of this acidic amino acid. We now report that a nerve terminal cytosolic factor inhibits the ATP-dependent vesicular uptake of glutamate in a dose-dependent manner. This factor appears to be a protein with a molecular weight >100,000, as estimated by size exclusion chromatography, and is precipitated by ammonium sulfate (40% saturation). The inhibitory factor is inactivated by heating to 100°C. Proteolytic digestion of the ammonium sulfate fraction by trypsin or chymotrypsin did not reduce, but rather increased slightly, the inhibition of glutamate uptake. Unlike the native factor, the digest retained inhibitory activity after heating, suggesting that proteolytic digestion may generate active fragments. The inhibition of ATP-dependent vesicular glutamate uptake is not species-specific, as the factor obtained from both rat and bovine brains produced an equal degree of inhibition of glutamate uptake into vesicles of each species. These observations raise the possibility that vesicular uptake of glutamate may be regulated by an endogenous factor in vivo.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66195/1/j.1471-4159.1990.tb01212.x.pd

    Automated Scalable Heat Shock Modification for Standard Aquatic Housing Systems

    Full text link
    Heat shock is a common technique for inducible gene expression system in a variety of organisms. Heat shock treatment of adult zebrafish is more involved and generally consists of manually transferring fish between housing rack tanks and preheated water tanks or the use of timed heaters in stand-alone aquaria. To avoid excessive fish handling and to take advantage of the continuous flow of a standard housing rack, proposed modifications consisted of installing an aquarium heater inside each tank, manually setting the heater to reach heat shocking temperatures (>37°C) and, after that, testing that every tank responded equally. To address the limitations in the existing systems, we developed a novel modification of standard zebrafish housing racks to perform heat shock treatment in conditions of continuous water flow. By adding an extra manifold to the housing rack and connecting it to a recirculating bath to create a parallel water flow system, we can increase the temperature from standard conditions (28.5°C) to heat shock conditions with high precision (38.0?38.3°C, mean±SD=38.1°C±0.14°C) and minimal variation among experimental tanks (coefficient of variation [CV]=0.04%). This means that there is virtually no need for laborious pretreatment calibrations or continuous adjustments to minimize intertank variation. To test the effectiveness of our design, we utilized this system to induce enhanced green fluorescent protein (EGFP) expression in hsp70-EGFP fish and performed a fin regeneration experiment with hsp70l:dnfgfr1-EGFP fish to confirm that heat-induced gene expression reached physiological levels. In summary, our newly described aquatic heat shock system minimizes effort during heat shock experiments, while ensuring the best water quality and fish welfare and facilitating large heat shock settings or the use of multiple transgenic lines for both research and teaching experiments.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140304/1/zeb.2015.1087.pd

    ATP-Dependent Glutamate Uptake into Synaptic Vesicles from Cerebellar Mutant Mice

    Full text link
    The ATP-dependent glutamate uptake system in synaptic vesicles prepared from mouse cerebellum was characterized, and the levels of glutamate uptake were investigated in the cerebellar mutant mice, staggerer and weaver, whose main defect is the loss of cerebellar granule cells, and the nervous mutant, whose main defect is the loss of Purkinje cells. The ATP-dependent glutamate uptake is stimulated by low concentrations of chloride, is insensitive to aspartate, and is inhibited by agents known to dissipate the electrochemical proton gradient. These properties are similar to those of the glutamate uptake system observed in the highly purified synaptic vesicles prepared from bovine cortex. The ATP-dependent glutamate uptake system is reduced by 68% in the staggerer and 57–67% in the weaver mutant; these reductions parallel the substantial loss of granule cells in those mutants. In contrast, the cerebellar levels of glutamate uptake are not altered significantly in the nervous mutant, which has lost Purkinje cells, but not granule cells. In view of evidence that granule cells are glutamatergic neurons and Purkinje cells are GABAergic neurons, these observations support the notion that the ATP-dependent glutamate uptake system is present in synaptic vesicles of glutamatergic neurons.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66449/1/j.1471-4159.1988.tb03068.x.pd

    Calcium-dependent release of accumulated glutamate from synaptic vesicles within permeabilized nerve terminals

    Full text link
    We have studied glutamate release from synaptic vesicles in permeabilized synaptosomes, which were preloaded with [3H]glutamate in an ATP-dependent manner. The release was found to be calcium-dependent and to require a heat-labile cytosolic macromolecule factor for maximum activity. Maximal release occurred at 5 [mu]M free Ca2+ and within 5 min. Of the other divalent cations tested, only barium stimulated release of vesicular glutamate. The release was inhibited by N-ethylmaleimide. These results are characteristic of exocytotic release of monoamines and peptides observed in endocrine systems, and constitute direct evidence for the notion that calcium-dependent release of glutamate originates from the vesicular pool.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29494/1/0000580.pd

    Phosphoglycerates and Protein Phosphorylation: Identification of a Protein Substrate as Glucose-1,6-Bisphosphate Synthetase

    Full text link
    We have previously reported the occurrence of two endogenous protein phosphorylation systems in mammalian brain that are enhanced in the presence of 3-phosphoglycerate (3PG) and ATP. We present here a study of one of these systems, the phosphorylation of the 72-kDa protein (3PG-PP 72 ). This system was separated into the substrate, 3PG-PP 72 , and a kinase by ammonium sulfate fractionation, hydroxyapatite chromatography, and hydrophobic interaction HPLC. The substrate protein was shown to be directly phosphorylated with [1- 32 P]1,3-bisphosphoglycerate ([1- 32 P]1,3BPG) with an apparent K m of 1.1 n M . Nonradioactive 1,3BPG inhibited 32 P incorporation in the presence of [Γ- 32 P]ATP and 3PG. Phosphopeptide mapping and phosphoamino acid analyses indicated that the site of phosphorylation of 3PG-PP 72 observed in the presence of 3PG and ATP is a serine residue identical to that observed with [1- 32 P]1,3BPG. Moreover, [ 32 P]phosphate incorporated into 3PG-PP 72 in the presence of 3PG and ATP was removed by subsequent incubation with glucose-1-phosphate or glucose-6-phosphate. Finally, 3PG-PP 72 showed chromatographic behaviors identical to those of glucose-1,6-bisphosphate (G1,6P 2 ) synthetase. Based upon these observations, we conclude that 3PG-PP 72 is G1,6P 2 synthetase and that it is phosphorylated directly by 1,3BPG, which is formed from 3PG and ATP by 3PG kinase present in a crude 3PG-PP 72 preparation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66052/1/j.1471-4159.1991.tb02028.x.pd

    Magnetic Resonance Imaging of Ethyl-nitrosourea-induced Rat Gliomas: A Model for Experimental Therapeutics of Low-grade Gliomas

    Full text link
    Human low-grade gliomas represent a population of brain tumors that remain a therapeutic challenge. Preclinical evaluation of agents, to test their preventive or therapeutic efficacy in these tumors, requires the use of animal nobreak models. Spontaneous gliomas develop in models of chemically induced carcinogenesis, such as in the transplacental N-ethyl-N-nitrosourea (ENU) rat model. However, without the ability to detect initial tumor formation, multiplicity or to measure growth rates, it is difficult to test compounds for their interventional or preventional capabilities. In this study Fisher-334 rats, treated transplacentally with ENU, underwent magnetic resonance imaging (MRI) examination in order to evaluate this approach for detection of tumor formation and growth. ENU-induced intracranial cerebral tumors were first observable in T2-weighted images beginning at 4 months of age and grew with a mean doubling time of 0.487 ± 0.112 months. These tumors were found histologically to be predominately mixed gliomas. Two therapeutic interventions were evaluated using MRI, vitamin A (all-trans retinol palmitate, RP), as a chemopreventative agent and the anti-angiogenic drug SU-5416. RP was found to significantly delay the time to first tumor observation by one month ( P = 0.05). No differences in rates of tumor formation or growth rates were observed between control and RP-treated groups. MRI studies of rats treated with SU-5416 resulted in reduction in tumor growth rates compared to matched controls. These results show that MRI can be used to provide novel information relating to the therapeutic efficacy of agents against the ENU-induced tumor model.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45391/1/11060_2004_Article_352248.pd

    Microanatomy of Adult Zebrafish Extraocular Muscles

    Get PDF
    Binocular vision requires intricate control of eye movement to align overlapping visual fields for fusion in the visual cortex, and each eye is controlled by 6 extraocular muscles (EOMs). Disorders of EOMs are an important cause of symptomatic vision loss. Importantly, EOMs represent specialized skeletal muscles with distinct gene expression profile and susceptibility to neuromuscular disorders. We aim to investigate and describe the anatomy of adult zebrafish extraocular muscles (EOMs) to enable comparison with human EOM anatomy and facilitate the use of zebrafish as a model for EOM research. Using differential interference contrast (DIC), epifluorescence microscopy, and precise sectioning techniques, we evaluate the anatomy of zebrafish EOM origin, muscle course, and insertion on the eye. Immunofluorescence is used to identify components of tendons, basement membrane and neuromuscular junctions (NMJs), and to analyze myofiber characteristics. We find that adult zebrafish EOM insertions on the globe parallel the organization of human EOMs, including the close proximity of specific EOM insertions to one another. However, analysis of EOM origins reveals important differences between human and zebrafish, such as the common rostral origin of both oblique muscles and the caudal origin of the lateral rectus muscles. Thrombospondin 4 marks the EOM tendons in regions that are highly innervated, and laminin marks the basement membrane, enabling evaluation of myofiber size and distribution. The NMJs appear to include both en plaque and en grappe synapses, while NMJ density is much higher in EOMs than in somatic muscles. In conclusion, zebrafish and human EOM anatomy are generally homologous, supporting the use of zebrafish for studying EOM biology. However, anatomic differences exist, revealing divergent evolutionary pressures

    The differential effects of ecstasy/polydrug use on executive components: shifting, inhibition, updating and access to semantic memory

    Get PDF
    Rationale/Objectives Recent theoretical models suggest that the central executive may not be a unified structure. The present study explored the nature of central executive deficits in ecstasy users. Methods In study 1, 27 ecstasy users and 34 non-users were assessed using tasks to tap memory updating (computation span; letter updating) and access to long-term memory (a semantic fluency test and the Chicago Word Fluency Test). In study 2, 51 ecstasy users and 42 non-users completed tasks that assess mental set switching (number/letter and plus/minus) and inhibition (random letter generation). Results MANOVA revealed that ecstasy users performed worse on both tasks used to assess memory updating and on tasks to assess access to long-term memory (C- and S-letter fluency). However, notwithstanding the significant ecstasy group-related effects, indices of cocaine and cannabis use were also significantly correlated with most of the executive measures. Unexpectedly, in study 2, ecstasy users performed significantly better on the inhibition task, producing more letters than non-users. No group differences were observed on the switching tasks. Correlations between indices of ecstasy use and number of letters produced were significant. Conclusions The present study provides further support for ecstasy/polydrug-related deficits in memory updating and in access to long-term memory. The surplus evident on the inhibition task should be treated with some caution, as this was limited to a single measure and has not been supported by our previous work
    corecore