13 research outputs found

    Vergence-Mediated Changes in Listing's Plane Do Not Occur in an Eye with Superior Oblique Palsy

    Get PDF
    PURPOSE. As a normal subject looks from far to near, Listing's plane rotates temporally in each eye. Since Listing's plane relates to the control of torsional eye position, mostly by the oblique eye muscles, the current study was conducted to test the hypothesis that a patient with isolated superior oblique palsy would have a problem controlling Listing's plane. METHOD. Using the three-dimensional scleral search coil technique, binocular Listing's plane was measured in four patients with congenital and in four patients with acquired unilateral superior oblique palsy during far-(94 cm) and near-(15 cm) viewing. The results were compared to previously published Listing's plane data collected under exactly the same conditions from 10 normal subjects. RESULTS. In patients with unilateral superior oblique palsy, either congenital or acquired, Listing's plane in the normal eye rotated temporally on near-viewing, as in normal subjects, while in the paretic eye it failed to do so. In patients with acquired superior oblique palsy, Listing's plane was already rotated temporally during far-viewing and failed to rotate any farther on near-viewing, whereas in patients with congenital superior oblique palsy Listing's plane in the paretic eye was oriented normally during far-viewing and failed to rotate any farther on near-viewing. CONCLUSIONS. These results suggest that the superior oblique muscle, at least in part, is responsible for the temporal rotation of Listing's plane that occurs in normal subjects on convergence. (Invest Ophthalmol Vis Sci. 2004;45:3043-3047) DOI:10.1167/iovs.04-0014 A lthough the eye can rotate with three degrees of freedom, during visual fixation, smooth pursuit, and saccades, it exercises only two: horizontal and vertical. Furthermore, when the head is not moving and there is no vestibular input, horizontal and vertical eye-in-head position (gaze position) determines how much the eye has rotated about its line of sight (i.e., the amount of torsion). This relationship between torsional eye position and gaze position is described by Listing's law. During visual fixation, smooth pursuit, 1 and saccades, 2 Listing's law correctly predicts that the tips of the rotation vectors used to describe eye positions all lie in a plane called the displacement plane. 3 The displacement plane is determined by Listing's plane (LP), which is head fixed and changes orientation under few conditions. For example, LP changes orientation during prolonged fusion of an imposed vertical disparity 4 and during prismatically induced horizontal and vertical vergence. 6 -9 LP rotates in each eye around a point that is not at the origin of the coordinate system describing eye position. Consequently, it is only during downward gaze that torsional eye position changes significantly on near-viewing. Temporal rotation of LP on near-viewing approximately aligns the three-dimensional eye rotation axes during saccades and, as a consequence, eye eccentricity is minimized. 11 However, another line of evidence suggests that the vergence-mediated change in LP may be due to relaxation of one extraocular muscle, the superior oblique. Eye torsion is produced mainly by the oblique eye muscles. There could be some structural differences between congenital and acquired SOPs. One study reported imaging of abnormalities of the superior oblique tendon in congenital SOP in contrast to atrophy of the superior oblique muscle in acquired SOP, 15 but this result was not replicated

    Bioinformatics-Based Identification of Expanded Repeats: A Non-reference Intronic Pentamer Expansion in RFC1 Causes CANVAS

    Get PDF
    Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    ENG : Television News

    No full text
    xx, 441 tr. ; 24 cm

    ENG : Television News

    No full text
    VI, 441 tr.; 24 cm

    Changes in the Three-Dimensional Angular Vestibulo-Ocular Reflex following Intratympanic Gentamicin for Ménière's Disease

    No full text
    The 3-dimensional angular vestibulo-ocular reflexes (AVOR) elicited by rapid rotary head thrusts were studied in 17 subjects with unilateral Ménière's disease before and 2–10 weeks after treatment with intratympanic gentamicin and in 13 subjects after surgical unilateral vestibular destruction (SUVD). Each head thrust was in the horizontal plane or in either diagonal plane of the vertical semicircular canals, so that each head thrust effectively stimulated only one pair of canals. The AVOR gains (eye velocity/head velocity during the 30 ms before peak head velocity) for the head thrusts exciting each individual canal were averaged and taken as a measure of the function of that canal. Prior to intratympanic gentamicin, gains for head thrusts that excited canals on the affected side were 0.91 ± 0.20 (horizontal canal, HC), 0.78 ± 0.20 (anterior canal, AC), and 0.83 ± 0.10 (posterior canal, PC). The asymmetries between these gain values and those for head thrusts that excited the contralateral canals were <2%. In contrast, caloric asymmetries averaged 40% ± 32%. Intratympanic gentamicin resulted in decreased gains attributable to each canal on the treated side: 0.40 ± 0.12 (HC), 0.35 ± 0.14 (AC), 0.31 ± 0.14 (PC) (p <0.01). However, the gains attributable to contralateral canals dropped only slightly, resulting in marked asymmetries between gains for excitation of ipsilateral canals versus their contralateral mates: HC: 34% ± 12%, AC: 24% ± 25%, and PC: 42% ± 13%. There was no difference in the AVOR gain for excitation of the ipsilateral HC after gentamicin in patients who received a single intratympanic injection (0.39 ± 0.11, n = 12) in comparison to those who received 2–3 injections (0.42 ± 0.15, n = 5, p = 0.7). Gain decreases attributed to the gentamicin-treated HC and AC were not as severe as those observed after SUVD. This finding suggests that intratympanic gentamicin causes a partial vestibular lesion that may involve preservation of spontaneous discharge and/or rotational sensitivity of afferents

    Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes

    No full text
    Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m-2 h-1 bar-1 compared with 4-7 L m-2 h-1 bar-1) over similarly rated commercial membranes. © 2018 The Author(s).11Ysciescopu
    corecore