142 research outputs found

    The Payne: self-consistent ab initio fitting of stellar spectra

    Full text link
    We present The Payne, a general method for the precise and simultaneous determination of numerous stellar labels from observed spectra, based on fitting physical spectral models. The Payne combines a number of important methodological aspects: it exploits the information from much of the available spectral range; it fits all labels (stellar parameters and element abundances) simultaneously; it uses spectral models, where the atmosphere structure and the radiative transport are consistently calculated to reflect the stellar labels. At its core The Payne has an approach to accurate and precise interpolation and prediction of the spectrum in high-dimensional label-space, which is flexible and robust, yet based on only a moderate number of ab initio models (O(1000) for 25 labels). With a simple neural-net-like functional form and a suitable choice of training labels, this interpolation yields a spectral flux prediction good to 10310^{-3} rms across a wide range of TeffT_{\rm eff} and log g (including dwarfs and giants). We illustrate the power of this approach by applying it to the APOGEE DR14 data set, drawing on Kurucz models with recently improved line lists: without recalibration, we obtain physically sensible stellar parameters as well as 15 element abundances that appear to be more precise than the published APOGEE DR14 values. In short, The Payne is an approach that for the first time combines all these key ingredients, necessary for progress towards optimal modelling of survey spectra; and it leads to both precise and accurate estimates of stellar labels, based on physical models and without re-calibration. Both the codes and catalog are made publicly available online.Comment: 22 pages, 17 figures, 2 tables, ApJ (Accepted for publication- 2019 May 11

    A Technique to Derive Improved Proper Motions for Kepler Objects of Interest

    Get PDF
    We outline an approach yielding proper motions with higher precision than exists in present catalogs for a sample of stars in the Kepler field. To increase proper motion precision we combine first moment centroids of Kepler pixel data from a single Season with existing catalog positions and proper motions. We use this astrometry to produce improved reduced proper motion diagrams, analogous to a Hertzsprung-Russell diagram, for stars identified as Kepler Objects of Interest. The more precise the relative proper motions, the better the discrimination between stellar luminosity classes. With UCAC4 and PPMXL epoch 2000 positions (and proper motions from those catalogs as quasi-bayesian priors) astrometry for a single test Channel (21) and Season (0) spanning two years yields proper motions with an average per-coordinate proper motion error of 1.0 millisecond of arc per year, over a factor of three better than existing catalogs. We apply a mapping between a reduced proper motion diagram and an HR diagram, both constructed using HST parallaxes and proper motions, to estimate Kepler Object of Interest K-band absolute magnitudes. The techniques discussed apply to any future small-field astrometry as well as the rest of the Kepler field.Comment: Accepted to The Astronomical Journal 15 August 201

    Signatures of unresolved binaries in stellar spectra: implications for spectral fitting

    Full text link
    The observable spectrum of an unresolved binary star system is a superposition of two single-star spectra. Even without a detectable velocity offset between the two stellar components, the combined spectrum of a binary system is in general different from that of either component, and fitting it with single-star models may yield inaccurate stellar parameters and abundances. We perform simple experiments with synthetic spectra to investigate the effect of unresolved main-sequence binaries on spectral fitting, modeling spectra similar to those collected by the APOGEE, GALAH, and LAMOST surveys. We find that fitting unresolved binaries with single-star models introduces systematic biases in the derived stellar parameters and abundances that are modest but certainly not negligible, with typical systematic errors of 300K300\,\rm K in TeffT_{\rm eff}, 0.1 dex in logg\log g, and 0.1 dex in [Fe/H][\rm Fe/H] for APOGEE-like spectra of solar-type stars. These biases are smaller for spectra at optical wavelengths than in the near-infrared. We show that biases can be corrected by fitting spectra with a binary model, which adds only two labels to the fit and includes single-star models as a special case. Our model provides a promising new method to constrain the Galactic binary population, including systems with single-epoch spectra and no detectable velocity offset between the two stars.Comment: Accept to MNRAS with minor revisions since v1. 7 pages, 5 figure
    corecore