26 research outputs found

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Pre-design of magnum-PSI: A new plasma-wall interaction experiment

    No full text
    The FOM-Institute for Plasma Physics Rijnhuizen is preparing the construction of Magnum-PSI, a magnetized (3 T), steady state, large area (80 cm(2)) high-flux (up to 10(24) H+ ions m(-2) s(-1)) plasma generator. The aim of the linear plasma device Magnum-PSI is to provide a controlled, highly accessible laboratory experiment in which the interaction of a magnetized plasma with different surfaces can be studied in detail. Plasma parameters can be varied over a wide range, in particular covering the high-density, low-temperature conditions expected for the detached divertor plasma of ITER. The target set-up will be extremely flexible allowing the investigation of different materials under a large variety of conditions (temperatures, inclination, biasing, coatings, etc.). A range of target materials will be used, including carbon, tungsten and other metals, and mixed materials. Because of the large plasma beam of 10 cm diameter and spacious vacuum tank, even the test of whole plasma-facing component mock-ups will be possible.In this article, we will present the pre-design of the Magnum-PSI experiment. We will focus on the requirements of the vacuum system and the 3 T superconducting magnet. We briefly introduce some of the other sub-systems on Magnum-PSI such as the target and target manipulator. (C) 2007 Elsevier B.V. All fights reserved

    Construction of the plasma-wall experiment Magnum-PSI

    No full text
    The FOM-Institute for Plasma Physics Rijnhuizen is constructing Magnum-PSI: a magnetized (3 T), steady-state, large area (80 cm(2)) high-flux (up to 10(24) H+ ions m(-2) s(-1)) plasma generator. Magnum-PSI will be a highly accessible laboratory experiment in which the interaction of magnetized plasma with different surfaces can be studied. This experiment will provide new insights in the complex physics and chemistry that will occur in the divertor region of the future experimental fusion reactor ITER. Here, extremely high power and particle flux densities are predicted at relatively low plasma temperatures. Magnum-PSI will be able to simulate these detached ITER divertor conditions in detail. In addition, conditions can be varied over a wide range, such as different target materials, plasma temperatures, beam diameters, particle fluxes, inclination angles of target, background pressures, magnetic fields, etc., making Magnum-PSI an excellent test bed for high heat flux components of future fusion reactors.The design phase of the Magnum-PSI device has been completed. The construction and assembly phase of the device is in progress. In this contribution, we will present the design and construction of the Magnum-PSI experiment. The status of the vacuum system, the 3 T superconducting magnet, the plasma source, the target plate and manipulator, and additional plasma heating will be presented. The plasma and surface diagnostics that will be used in the Magnum-PSI experiment will be introduced. (C) 2010 Elsevier B.V. All rights reserved
    corecore