23 research outputs found

    ATBF1 and NQO1 as candidate targets for allelic loss at chromosome arm 16q in breast cancer: Absence of somatic ATBF1 mutations and no role for the C609T NQO1 polymorphism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Loss of heterozygosity (LOH) at chromosome arm 16q is frequently observed in human breast cancer, suggesting that one or more target tumor suppressor genes (TSGs) are located there. However, detailed mapping of the smallest region of LOH has not yet resulted in the identification of a TSG at 16q. Therefore, the present study attempted to identify TSGs using an approach based on mRNA expression.</p> <p>Methods</p> <p>A cDNA microarray for the 16q region was constructed and analyzed using RNA samples from 39 breast tumors with known LOH status at 16q.</p> <p>Results</p> <p>Five genes were identified to show lower expression in tumors with LOH at 16q compared to tumors without LOH. The genes for NAD(P)H dehydrogenase quinone (<it>NQO1</it>) and AT-binding transcription factor 1 (<it>ATBF1</it>) were further investigated given their functions as potential TSGs. <it>NQO1 </it>has been implicated in carcinogenesis due to its role in quinone detoxification and in stabilization of p53. One inactive polymorphic variant of <it>NQO1 </it>encodes a product showing reduced enzymatic activity. However, we did not find preferential targeting of the active <it>NQO1 </it>allele in tumors with LOH at 16q. Immunohistochemical analysis of 354 invasive breast tumors revealed that NQO1 protein expression in a subset of breast tumors is higher than in normal epithelium, which contradicts its proposed role as a tumor suppressor gene.</p> <p><it>ATBF1 </it>has been suggested as a target for LOH at 16q in prostate cancer. We analyzed the entire coding sequence in 48 breast tumors, but did not identify somatic sequence changes. We did find several in-frame insertions and deletions, two variants of which were reported to be somatic pathogenic mutations in prostate cancer. Here, we show that these variants are also present in the germline in 2.5% of 550 breast cancer patients and 2.9% of 175 healthy controls. This indicates that the frequency of these variants is not increased in breast cancer patients. Moreover, there is no preferential LOH of the wildtype allele in breast tumors.</p> <p>Conclusion</p> <p>Two likely candidate TSGs at 16q in breast cancer, <it>NQO1 </it>and <it>ATBF1</it>, were identified here as showing reduced expression in tumors with 16q LOH, but further analysis indicated that they are not target genes of LOH. Furthermore, our results call into question the validity of the previously reported pathogenic variants of the <it>ATBF1 </it>gene.</p

    Geochemical evaluation of the Lueshe niobium deposit (Zaire) by Rietveld quantitative X-ray diffraction

    No full text
    The Lueshe Nb deposit is used as an example to show that a modal analysis of fine-grained samples can readily be obtained by X-ray powder diffraction and the Rietveld method. This permits applications such as the visualisation of the weathering profile, the calculation of enrichment factors and estimation of the amount of nondiffracting material. This quantification method is based on the knowledge of the structural parameters of all the phases present in the sample and, in the case of geological material (especially secondary minerals), it sometimes requires structure refinement to optimize the results. (C) 1997 Elsevier Science Ltd

    Identification and characterization of an original grapevine cultivar (Vitis vinifera) found in Chile

    No full text
    UMR AGAP - Equipe Diversité, adaptation et amélioration de la vigne (DAAV)Currently, many monovarietal vineyards present a minority of mixed cultivars. Some of these cultivars are unknown and could represent an opportunity to discover new and potentially useful genotypes both for research and production purposes. In a 'Carmenere' vineyard planted in 1994 in Palmilla (Colchagua Valley, Chile), a minority presence of other cultivars was found. The present work covers for the first time the identification and characterization of one of these cultivars, which presented a very poor fruit set. Through classic ampelography, it was not possible to associate the studied cultivar with any known cultivar in Chile. However, through a simple sequence repeats (SSR) comparison against the database of the INRA Germplasm Repository "Domaine de Vassal" in France, the cultivar was identified as a triploid accession named 'Folle Blanche Faux' (Vitis vinifera L.) that was previously found in Chile during the season of 1950-1951. This cultivar presents earlier bud breaking than 'Carmenere', has morphologically complete flowers, and shows a physiological disorder around the fruit set, leading to partial or complete bunch necrosis under the environmental conditions of Palmilla. This cultivar contributes to the genotypic richness present in Chile and might be an interesting tool for physiological and molecular studies. It also could become productive under other environmental conditions (i.e., environmental conditions that favor a good fruit set) or by the application of adequate vineyard practices, such as cane girdling at bloom time

    Wilancookite, (Ba,K,Na)8(Ba,Li,[])6Be24P24O96?32H2O, a new 2 beryllophosphate with a zeolite framework.

    No full text
    Wilancookite, ideally (Ba,K,Na)8(Ba,Li,[])6Be24P24O96?32H2O, is a new mineral species from the Lavra Ponte do Piau? 19 complex granitic pegmatite, Minas Gerais, Brazil. It occurs as tiny dodecahedral {1 1 0} crystals, deposited on moraesite fibres. 20 Associated primary minerals are albite, montebrasite, Li-bearing micas, cassiterite, elbaite and quartz, while the secondary phosphate 21 association contains fluorapatite, childrenite, eosphorite, zanazziite, greifenstenite, guimar?esite, ushkovite, sal?eite and moraesite. 22 The mineral is transparent and colourless, with a vitreous lustre; it is non-fluorescent, brittle, and its streak is white. The estimated 23 Mohs hardness is 4?5, and the calculated density is 3.05 g/cm3.Wilancookite is isotropic, colourless, non-pleochroic, with n = 1.560(2) 24 (measured under l = 590nm). Electron- and ion-microprobe analyses give (in wt%): P2O5 36.19, SiO2 0.04, Al2O3 0.41, BaO 25 34.65, Na2O 0.09, K2O 0.32, BeO 12.86, Li2O 0.50, and H2Ocalc 12.31, total 97.37wt%. The resulting empirical formula, calculated 26 on the basis of 96 anhydrous oxygen atoms, is (Ba7.54K0.32Na0.14)S8.00(Ba3.04Li1.57[]1.39)S6.00Be24.08(P23.88Al0.38Si0.03)S24.29 27 O96?32H2O. The single-crystal unit-cell parameters are a = 13.5398(2)A and V = 2482.21(7), space group I23. The eight strongest 28 lines in the powder X-ray diffraction pattern [d(in A )(I)(hkl)] are: 6.90(60)(2 0 0), 5.54(80)(2 1 1), 3.630(60)(3 2 1, 3 1 2), 3.212(70) 29 (3 3 0, 4 1 1), 3.043(100)(4 2 0, 4 0 2), 2.885(70)(3 3 2), 2.774(80)(4 2 2), and 2.398(60)(4 4 0). The crystal structure of wilancookite 30 has been refined, based on single-crystal X-ray diffraction data, to R1 = 4.58%; the beryllophosphate framework is similar to that 31 occurring in pahasapaite, and is based on zeolite-RHO cages. The mineral species and name were approved by the Commission on 32 New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2015-034)
    corecore