107 research outputs found

    Spin-dependent Bohm trajectories associated with an electronic transition in hydrogen

    Full text link
    The Bohm causal theory of quantum mechanics with spin-dependence is used to determine electron trajectories when a hydrogen atom is subjected to (semi-classical) radiation. The transition between the 1s ground state and the 2p0 state is examined. It is found that transitions can be identified along Bohm trajectories. The trajectories lie on invariant hyperboloid surfaces of revolution in R^3. The energy along the trajectories is also discussed in relation to the hydrogen energy eigenvalues.Comment: 18 pages, 8 figure

    Grounding Bohmian Mechanics in Weak Values and Bayesianism

    Full text link
    Bohmian mechanics (BM) is a popular interpretation of quantum mechanics in which particles have real positions. The velocity of a point x in configuration space is defined as the standard probability current j(x) divided by the probability density P(x). However, this ``standard'' j is in fact only one of infinitely many that transform correctly and satisfy \dot P + \del . j=0. In this article I show that there is a unique j that can be determined experimentally as a weak value using techniques that would make sense to a classical physicist. Moreover, this operationally defined j equals the standard j, so, assuming \dot x = j/P, the possible Bohmian paths can also be determined experimentally from a large enough ensemble. Furthermore, this approach to deriving BM singles out x as the hidden variable, because (for example) the operationally defined momentum current is in general incompatible with the evolution of the momentum distribution. Finally I discuss how, in this setting, the usual quantum probabilities can be derived from a Bayesian standpoint, via the principle of indifference.Comment: 11 page

    Selection of Conditions for Cellulase and Xylanase Extraction from Switchgrass Colonized by Acidothermus cellulolyticus

    Get PDF
    Solid-state fermentation has been widely used for enzyme production. However, secreted enzymes often bind to the solid substrate preventing their detection and recovery. A series of screening studies was performed to examine the role of extraction buffer composition including NaCl, ethylene glycol, sodium acetate buffer, and Tween 80, on xylanase and cellulase recovery from switchgrass. Our results indicated that the selection of an extraction buffer is highly dependent on the nature and source of the enzyme being extracted. While a buffer containing 50Β mM sodium acetate at pHΒ 5 was found to have a positive effect on the recovery of commercial fungal-derived cellulase and xylanase amended to switchgrass, the same buffer had a significant negative effect on enzyme extraction from solid fermentation samples colonized by the bacterium Acidothermus cellulolyticus. Xylanase activity was more affected by components in the extraction buffers compared to cellulase. This study demonstrated that extraction followed by diafiltration is important for assessing enzyme recovery from solid fermentation samples. Reduction in activity due to compounds present in the switchgrass extracts is reversible when the compounds are removed via diafiltration

    Differential Expression of CD163 on Monocyte Subsets in Healthy and HIV-1 Infected Individuals

    Get PDF
    CD163, a haptoglobin-hemoglobin (Hp-Hb) scavenger receptor, expressed by monocytes and macrophages, is important in resolution of inflammation. Age-related non-AIDS co-morbidities in HIV-infected individuals, particularly dementia and cardiovascular disease, result in part from effects of HIV-1 infection on monocyte and macrophage biology. CD163 co-expression on CD14+CD16++ monocytes has been proposed as a useful biomarker for HIV-1 disease progression and the presence of HIV associated dementia. Here we investigated CD163 expression on monocyte subsets ex vivo, on cultured macrophages, and soluble in plasma, in the setting of HIV-1 infection. Whole blood immunophenotyping revealed CD163 expression on CD14++CD16- monocytes but not on CD14+CD16++ monocytes (Pβ€Š=β€Š0.004), supported by CD163 mRNA levels. Incubation with M-CSF induced CD163 protein expression on CD14+CD16++ monocytes to the same extent as CD14++CD16βˆ’ monocytes. CD163 expression on CD14++CD16+ monocytes from HIV-infected subjects was significantly higher than from uninfected individuals, with a trend towards increased expression on CD14++CD16βˆ’ monocytes (Pβ€Š=β€Š0.019 and 0.069 respectively), which is accounted for by HIV-1 therapy including protease inhibitors. Shedding of CD163 was shown to predominantly occur from the CD14++CD16βˆ’ subset after Ficoll isolation and LPS stimulation. Soluble CD163 concentration in plasma from HIV-1 infected donors was similar to HIV-1 uninfected donors. Monocyte CD163 expression in HIV-1 infected patients showed a complicated relationship with classical measures of disease progression. Our findings clarify technical issues regarding CD163 expression on monocyte subsets and further elucidates its role in HIV-associated inflammation by demonstrating that CD163 is readily lost from CD14++CD16βˆ’ monocytes and induced in pro-inflammatory CD14+CD16++ monocytes by M-CSF. Our data show that all monocyte subsets are potentially capable of differentiating into CD163-expressing anti-inflammatory macrophages given appropriate stimuli. Levels of CD163 expression on monocytes may be a potential biomarker reflecting efforts by the immune system to resolve immune activation and inflammation in HIV-infected individuals

    Differential Expression of CD163 on Monocyte Subsets in Healthy and HIV-1 Infected Individuals

    Get PDF
    CD163, a haptoglobin-hemoglobin (Hp-Hb) scavenger receptor, expressed by monocytes and macrophages, is important in resolution of inflammation. Age-related non-AIDS co-morbidities in HIV-infected individuals, particularly dementia and cardiovascular disease, result in part from effects of HIV-1 infection on monocyte and macrophage biology. CD163 co-expression on CD14+CD16++ monocytes has been proposed as a useful biomarker for HIV-1 disease progression and the presence of HIV associated dementia. Here we investigated CD163 expression on monocyte subsets ex vivo, on cultured macrophages, and soluble in plasma, in the setting of HIV-1 infection. Whole blood immunophenotyping revealed CD163 expression on CD14++CD16- monocytes but not on CD14+CD16++ monocytes (Pβ€Š=β€Š0.004), supported by CD163 mRNA levels. Incubation with M-CSF induced CD163 protein expression on CD14+CD16++ monocytes to the same extent as CD14++CD16βˆ’ monocytes. CD163 expression on CD14++CD16+ monocytes from HIV-infected subjects was significantly higher than from uninfected individuals, with a trend towards increased expression on CD14++CD16βˆ’ monocytes (Pβ€Š=β€Š0.019 and 0.069 respectively), which is accounted for by HIV-1 therapy including protease inhibitors. Shedding of CD163 was shown to predominantly occur from the CD14++CD16βˆ’ subset after Ficoll isolation and LPS stimulation. Soluble CD163 concentration in plasma from HIV-1 infected donors was similar to HIV-1 uninfected donors. Monocyte CD163 expression in HIV-1 infected patients showed a complicated relationship with classical measures of disease progression. Our findings clarify technical issues regarding CD163 expression on monocyte subsets and further elucidates its role in HIV-associated inflammation by demonstrating that CD163 is readily lost from CD14++CD16βˆ’ monocytes and induced in pro-inflammatory CD14+CD16++ monocytes by M-CSF. Our data show that all monocyte subsets are potentially capable of differentiating into CD163-expressing anti-inflammatory macrophages given appropriate stimuli. Levels of CD163 expression on monocytes may be a potential biomarker reflecting efforts by the immune system to resolve immune activation and inflammation in HIV-infected individuals

    Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study

    Get PDF
    BACKGROUND: This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). METHODS: In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. RESULTS: Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. CONCLUSIONS: Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife
    • …
    corecore