4 research outputs found

    Comparative Study of Exsolved and Impregnated Ni Nanoparticles Supported on Nanoporous Perovskites for Low-Temperature CO Oxidation

    No full text
    This study investigated the redox exsolution of Ni nanoparticles from a nanoporous La0.52Sr0.28Ti0.94Ni0.06O3 perovskite. The characteristics of exsolved Ni nanoparticles including their size, population, and surface concentration were deeply analyzed by environmental scanning electron microscopy (ESEM), transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) mapping, and hydrogen temperature-programmed reduction (H2-TPR). Ni exsolution was triggered in hydrogen as early as 400 °C, with the highest catalytic activity for low-temperature CO oxidation achieved after a reduction step at 500 °C, despite only a 10% fraction of Ni exsolved. The activity and stability of exsolved nanoparticles were compared with their impregnated counterparts on a perovskite material with a similar chemical composition (La0.65Sr0.35TiO3) and a comparable specific surface area and Ni loading. After an aging step at 800 °C, the catalytic activity of exsolved Ni nanoparticles at 300 °C was found to be 10 times higher than that of impregnated ones, emphasizing the thermal stability of Ni nanoparticles prepared by redox exsolution

    Dynamic Shaping of Femtoliter Dew Droplets

    No full text
    Herein, we show that wetting properties such as giant wetting anisotropy and dynamic shaping can be observed when femtoliter (submicron scale) dew droplets are condensed on nanopatterned mildly hydrophilic surfaces. Large-scale, optically transparent, nanopatterned TiO<sub>2</sub> surfaces were fabricated by direct nanoimprinting lithography of sol–gel-derived films. Square, infinitely elongated, or circular droplets were obtained with square, line, or concentric patterns, respectively, and were visualized <i>in situ</i> during formation and recession using optical microscopy and environmental scanning electronic microscopy. We first describe how extremely elongated droplets could form on mildly hydrophilic surfaces, naturally contaminated in real environmental conditions. In this configuration, the dew droplet shape can be dynamically and reversibly varied by controlling the out-of-equilibrium conditions associated with condensation/evaporation kinetics. As an example of the application, we propose a “morphological” sensor that exploits the shape of the dew droplets as a transduction mode for detecting organic vapors in the outer atmosphere. Importantly, this study is underlining that environmentally stable, purely hydrophilic surfaces can be smartly engineered to induce wetting phenomena at very small scale never observed so far for hydrophobic or heterogeneous surfaces. Our versatile approach based on nanoimprinted, transparent sol–gel films could open great perspectives for the implementation of environmentally stable, mildly hydrophilic materials for “dew engineering” applications such as open microfluidics, fuming for fingerprints, vapor sensing, or water harvesting on glass windows, for instance

    Dynamic Shaping of Femtoliter Dew Droplets

    No full text
    Herein, we show that wetting properties such as giant wetting anisotropy and dynamic shaping can be observed when femtoliter (submicron scale) dew droplets are condensed on nanopatterned mildly hydrophilic surfaces. Large-scale, optically transparent, nanopatterned TiO<sub>2</sub> surfaces were fabricated by direct nanoimprinting lithography of sol–gel-derived films. Square, infinitely elongated, or circular droplets were obtained with square, line, or concentric patterns, respectively, and were visualized <i>in situ</i> during formation and recession using optical microscopy and environmental scanning electronic microscopy. We first describe how extremely elongated droplets could form on mildly hydrophilic surfaces, naturally contaminated in real environmental conditions. In this configuration, the dew droplet shape can be dynamically and reversibly varied by controlling the out-of-equilibrium conditions associated with condensation/evaporation kinetics. As an example of the application, we propose a “morphological” sensor that exploits the shape of the dew droplets as a transduction mode for detecting organic vapors in the outer atmosphere. Importantly, this study is underlining that environmentally stable, purely hydrophilic surfaces can be smartly engineered to induce wetting phenomena at very small scale never observed so far for hydrophobic or heterogeneous surfaces. Our versatile approach based on nanoimprinted, transparent sol–gel films could open great perspectives for the implementation of environmentally stable, mildly hydrophilic materials for “dew engineering” applications such as open microfluidics, fuming for fingerprints, vapor sensing, or water harvesting on glass windows, for instance

    Dynamic Shaping of Femtoliter Dew Droplets

    No full text
    Herein, we show that wetting properties such as giant wetting anisotropy and dynamic shaping can be observed when femtoliter (submicron scale) dew droplets are condensed on nanopatterned mildly hydrophilic surfaces. Large-scale, optically transparent, nanopatterned TiO<sub>2</sub> surfaces were fabricated by direct nanoimprinting lithography of sol–gel-derived films. Square, infinitely elongated, or circular droplets were obtained with square, line, or concentric patterns, respectively, and were visualized <i>in situ</i> during formation and recession using optical microscopy and environmental scanning electronic microscopy. We first describe how extremely elongated droplets could form on mildly hydrophilic surfaces, naturally contaminated in real environmental conditions. In this configuration, the dew droplet shape can be dynamically and reversibly varied by controlling the out-of-equilibrium conditions associated with condensation/evaporation kinetics. As an example of the application, we propose a “morphological” sensor that exploits the shape of the dew droplets as a transduction mode for detecting organic vapors in the outer atmosphere. Importantly, this study is underlining that environmentally stable, purely hydrophilic surfaces can be smartly engineered to induce wetting phenomena at very small scale never observed so far for hydrophobic or heterogeneous surfaces. Our versatile approach based on nanoimprinted, transparent sol–gel films could open great perspectives for the implementation of environmentally stable, mildly hydrophilic materials for “dew engineering” applications such as open microfluidics, fuming for fingerprints, vapor sensing, or water harvesting on glass windows, for instance
    corecore