314 research outputs found
Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb
AbstractBackground: Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear.Results: We show that the small G protein Rheb (Ras homolog enriched in brain) is a molecular target of TSC1/TSC2 that regulates mTOR signaling. Overexpression of Rheb activates 40S ribosomal protein S6 kinase 1 (S6K1) but not p90 ribosomal S6 kinase 1 (RSK1) or Akt. Furthermore, Rheb induces phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and causes 4E-BP1 to dissociate from eIF4E. This dissociation is completely sensitive to rapamycin (an mTOR inhibitor) but not wortmannin (a phosphoinositide 3-kinase [PI3K] inhibitor). Rheb also activates S6K1 during amino acid insufficiency via a rapamycin-sensitive mechanism, suggesting that Rheb participates in nutrient signaling through mTOR. Moreover, Rheb does not activate a S6K1 mutant that is unresponsive to mTOR-mediated signals, confirming that Rheb functions upstream of mTOR. Overexpression of the Tuberin-Hamartin heterodimer inhibits Rheb-mediated S6K1 activation, suggesting that Tuberin functions as a Rheb GTPase activating protein (GAP). Supporting this notion, TSC patient-derived Tuberin GAP domain mutants were unable to inactivate Rheb in vivo. Moreover, in vitro studies reveal that Tuberin, when associated with Hamartin, acts as a Rheb GTPase-activating protein. Finally, we show that membrane localization of Rheb is important for its biological activity because a farnesylation-defective mutant of Rheb stimulated S6K1 activation less efficiently.Conclusions: We show that Rheb acts as a novel mediator of the nutrient signaling input to mTOR and is the molecular target of TSC1 and TSC2 within mammalian cells
Recommended from our members
F-Actin Interactome Reveals Vimentin as a Key Regulator of Actin Organization and Cell Mechanics in Mitosis.
Most metazoan cells entering mitosis undergo characteristic rounding, which is important for accurate spindle positioning and chromosome separation. Rounding is driven by contractile tension generated by myosin motors in the sub-membranous actin cortex. Recent studies highlight that alongside myosin activity, cortical actin organization is a key regulator of cortex tension. Yet, how mitotic actin organization is controlled remains poorly understood. To address this, we characterized the F-actin interactome in spread interphase and round mitotic cells. Using super-resolution microscopy, we then screened for regulators of cortex architecture and identified the intermediate filament vimentin and the actin-vimentin linker plectin as unexpected candidates. We found that vimentin is recruited to the mitotic cortex in a plectin-dependent manner. We then showed that cortical vimentin controls actin network organization and mechanics in mitosis and is required for successful cell division in confinement. Together, our study highlights crucial interactions between cytoskeletal networks during cell division
F-Actin Interactome Reveals Vimentin as a Key Regulator of Actin Organization and Cell Mechanics in Mitosis.
Most metazoan cells entering mitosis undergo characteristic rounding, which is important for accurate spindle positioning and chromosome separation. Rounding is driven by contractile tension generated by myosin motors in the sub-membranous actin cortex. Recent studies highlight that alongside myosin activity, cortical actin organization is a key regulator of cortex tension. Yet, how mitotic actin organization is controlled remains poorly understood. To address this, we characterized the F-actin interactome in spread interphase and round mitotic cells. Using super-resolution microscopy, we then screened for regulators of cortex architecture and identified the intermediate filament vimentin and the actin-vimentin linker plectin as unexpected candidates. We found that vimentin is recruited to the mitotic cortex in a plectin-dependent manner. We then showed that cortical vimentin controls actin network organization and mechanics in mitosis and is required for successful cell division in confinement. Together, our study highlights crucial interactions between cytoskeletal networks during cell division
A comprehensive map of the mTOR signaling network
The mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation. mTOR signaling is frequently dysregulated in oncogenic cells, and thus an attractive target for anticancer therapy. Using CellDesigner, a modeling support software for graphical notation, we present herein a comprehensive map of the mTOR signaling network, which includes 964 species connected by 777 reactions. The map complies with both the systems biology markup language (SBML) and graphical notation (SBGN) for computational analysis and graphical representation, respectively. As captured in the mTOR map, we review and discuss our current understanding of the mTOR signaling network and highlight the impact of mTOR feedback and crosstalk regulations on drug-based cancer therapy. This map is available on the Payao platform, a Web 2.0 based community-wide interactive process for creating more accurate and information-rich databases. Thus, this comprehensive map of the mTOR network will serve as a tool to facilitate systems-level study of up-to-date mTOR network components and signaling events toward the discovery of novel regulatory processes and therapeutic strategies for cancer
Bartonella quintana coinfection with Mycobacterium avium complex and CMV in an AIDS patient: case presentation
BACKGROUND: As a greater number of HIV-infected patients survive despite profound immunodepression due to medical progress, we face complex infection with multiple agents in AIDS-patients. CASE PRESENTATION: We report the case of an AIDS patient with a primary clinical presentation suggestive of bacillary angiomatosis. We also found in cutaneous lesions Mycobacterium avium complex and cytomegalovirus. CONCLUSION: This clinical case illustrates the possibility of multiple coinfections in AIDS patients and the need to be exhaustive in evaluating infectious diseases in severely immunocompromised patients
Estimating Chikungunya prevalence in La Réunion Island outbreak by serosurveys: Two methods for two critical times of the epidemic
<p>Abstract</p> <p>Background</p> <p>Chikungunya virus (CHIKV) caused a major two-wave seventeen-month-long outbreak in La Réunion Island in 2005–2006. The aim of this study was to refine clinical estimates provided by a regional surveillance-system using a two-stage serological assessment as gold standard.</p> <p>Methods</p> <p>Two serosurveys were implemented: first, a rapid survey using stored sera of pregnant women, in order to assess the attack rate at the epidemic upsurge (s1, February 2006; n = 888); second, a population-based survey among a random sample of the community, to assess the herd immunity in the post-epidemic era (s2, October 2006; n = 2442). Sera were screened for anti-CHIKV specific antibodies (IgM and IgG in s1, IgG only in s2) using enzyme-linked immunosorbent assays. Seroprevalence rates were compared to clinical estimates of attack rates.</p> <p>Results</p> <p>In s1, 18.2% of the pregnant women were tested positive for CHIKV specific antibodies (13.8% for both IgM and IgG, 4.3% for IgM, 0.1% for IgG only) which provided a congruent estimate with the 16.5% attack rate calculated from the surveillance-system. In s2, the seroprevalence in community was estimated to 38.2% (95% CI, 35.9 to 40.6%). Extrapolations of seroprevalence rates led to estimate, at 143,000 and at 300,000 (95% CI, 283,000 to 320,000), the number of people infected in s1 and in s2, respectively. In comparison, the surveillance-system estimated at 130,000 and 266,000 the number of people infected for the same periods.</p> <p>Conclusion</p> <p>A rapid serosurvey in pregnant women can be helpful to assess the attack rate when large seroprevalence studies cannot be done. On the other hand, a population-based serosurvey is useful to refine the estimate when clinical diagnosis underestimates it. Our findings give valuable insights to assess the herd immunity along the course of epidemics.</p
Normosmic Congenital Hypogonadotropic Hypogonadism Due to TAC3/TACR3 Mutations: Characterization of Neuroendocrine Phenotypes and Novel Mutations
CONTEXT: TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH) (OMIM #146110). In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. OBJECTIVE: To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. RESULTS: From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%). We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants) found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn) probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001) higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. CONCLUSION: The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations
- …