476 research outputs found

    Segmentation and along-strike asymmetry of the passive margin in Socotra, eastern Gulf of Aden: Are they controlled by detachment faults?

    No full text
    International audienceOn the island of Socotra, the southern passive margin of the Gulf of Aden displays along its strike two different types of asymmetric structures. Western Socotra is made up of a series of southward tilted blocks bounded by consistently northward dipping normal faults. Eastern Socotra consists of a broad asymmetric anticline with a steep northern limb and a gently dipping southern limb. A zone of NE-SW striking strike- slip and normal faults separates the two areas. The overall structure is interpreted as representing two rift segments separated by a transfer zone. The along-strike juxtaposition of crustal-scale asymmetric structures on the southern margin of the Gulf of Aden is complemented by the asymmetry of the conjugate margins on either side of the gulf. Whereas the western Socotra margin is narrow and characterized by oceanward dipping normal faults, the conjugate Oman margin is broader and dominated by horsts and graben. Considering that asymmetric structures in the upper crust are often associated with synthetic shear zones at deeper ductile levels, we propose that the western and eastern Socotra margin segments were controlled at depth by two detachment faults with opposite dips and senses of shear. The normal faults of western Socotra would sole out into a top-to-the-north ductile shear zone, whereas the asymmetric anticline of eastern Socotra would be associated with a top-to-the-south detachment fault

    The Owen Ridge uplift in the Arabian Sea: Implications for the sedimentary record of Indian monsoon in Late Miocene

    No full text
    International audienceThe pelagic cover of the Owen Ridge in the Arabian Sea recorded the evolution of the Indian monsoon since the Middle Miocene. The uplift of the Owen Ridge resulted from tectonic processes along the previously unidentified Miocene India-Arabia plate boundary. Based on seismic reflection data tied with deep-sea drilling to track the Miocene India-Arabia plate boundary, we propose a new timing for the uplift of the Owen Ridge and highlight its impact on the record of climate changes in pelagic sediments. The new dataset reveals a fracture zone east of the Owen Ridge corresponding to the fossil plate boundary, and documents that the main uplift of the Owen Ridge occurred close to ∌8.5 Ma, and is coeval with a major uplift of the east Oman margin. Late Miocene deformation at the India-Arabia plate boundary is also coeval with the onset of intra-plate deformation in the Central Indian Ocean, suggesting a kinematic change of India and surrounding plates in the Late Miocene. The uplift of the Owen Ridge above the lysocline at ∌8.5 Ma accounts for a better preservation of Globigerina bulloides in the pelagic cover, previously misinterpreted as the result of a monsoon intensification event

    Owen Ridge deep-water submarine landslides: implications for tsunami hazard along the Oman coast

    Get PDF
    International audienceThe recent discovery of voluminous submarine landslides along the Owen Ridge may represent a source of tsunami hazard for the nearby Oman coast. We as- sess the severity of this potential hazard by performing numerical simulations of tsunami generation and propaga- tion from the biggest landslide (40km3 in volume) ob- served along the Owen Ridge. A finite-difference model, assimilating the landslide to a visco-plastic flow, simulates tsunami generation. Computation results show that Salalah city(190000inhabitants)isimpactedby2.5m-hightsunami waves one hour after sediment failure. Higher wave eleva- tion values (4 m) are reached in the low populated Sawqara Bay over 80 min after slide initiation. Although large subma- rine failures along remote oceanic ridges are infrequent, this study reveals an underestimated source of tsunami hazard in theArabianSea

    Mass wasting processes along the Owen Ridge (Northwest Indian Ocean)

    No full text
    International audienceThe Owen Ridge is a prominent relief that runs parallel to the coast of Oman in the NW Indian Ocean and is closely linked to the Owen Fracture Zone, an 800-km- long active fault system that accommodates today the Arabia-India strike-slip motion. Several types of mass failures mobilizing the pelagic cover have been mapped in details along the ridge using multibeam bathymetry and sediment echosounder. Here we present a synthetic map of the different types of mass wasting features observed along the ridge and we further establish a morphometric analysis of submarine landslides. The spatial variation of failure morphology is strongly related to the topography of the basement. The highest volumes of multi-events generated slides are mobilized along the southern portion of the ridge. There, the estimated volume of evacuated material during a slide is up to 45 km3. Combining these new observations with re-interpreted ODP seismic lines (Leg 117) documents sporadic mass wasting events through time along the southern segment of the ridge since its uplift in the Early Miocene, with a typical recurrence rate of the order of 105-106 years. Although seismicity may still be the final triggering process, mass wasting frequency is mainly controlled by the slow pelagic sedimentation rates and hence, time needed to build up the 40-80 m thick pelagic cover required to return to a mechanically unstable pelagic cover

    Cenozoic intracontinental dextral motion in the Okhotsk-Japan Sea Region

    No full text
    Laurent Jolivet est Professeur à l'Université d'Orléans au 1er Septembre 2009International audienceA right-lateral shear zone trending northerly along more than 2000 km is recognized from central Japan to northern Sakhalin. It was active mainly during the Neogene and has accommodated several hundreds of kilometers of displacement. The whole structure of Sakhalin is built on this shear zone. En échelon sigmoidal folds and thrusts, en échelon narrow Miocene basins, and a major discontinuity which is observed along more than 600 km, the Tym-Poronaisk fault, characterize the deformation there. In Hokkaido, en échelon folds and thrusts and a ductile shear zone with high-temperature metamorphism constitute the southern extension of this transpressional shear zone. It continues to the south as a zone of transtensional deformation along the eastern margin of Japan Sea, as en échelon basins and dextral transfer faults observed as far south as Noto peninsula and Yatsuo basin. The style of the shear zone thus evolves from transpressional in the north far from the subduction zone, to transtensional in the south in the back-arc region. Strike-slip motion along this shear zone was primarily responsible for the dextral pull-apart opening of Japan Sea during the early and middle Miocene. Dextral motion is still active in the north along the Tym-Poronaisk fault in Sakhalin as well as on the continental margin of Japan Sea (Korea and Asia mainland). Active E-W compression replaced the dextral motion along the eastern margin of Japan Sea in late Miocene time, and incipient subduction began in the early Quaternary

    Genomic insights into the evolutionary origin of Myxozoa within Cnidaria

    Get PDF
    The Myxozoa comprise over 2,000 species of microscopic obligate parasites that use both invertebrate and vertebrate hosts as part of their life cycle. Although the evolutionary origin of myxozoans has been elusive, a close relationship with cnidarians, a group that includes corals, sea anemones, jellyfish, and hydroids, is supported by some phylogenetic studies and the observation that the distinctive myxozoan structure, the polar capsule, is remarkably similar to the stinging structures (nematocysts) in cnidarians. To gain insight into the extreme evolutionary transition from a free-living cnidarian to a microscopic endoparasite, we analyzed genomic and transcriptomic assemblies from two distantly related myxozoan species, Kudoa iwatai and Myxobolus cerebralis, and compared these to the transcriptome and genome of the less reduced cnidarian parasite, Polypodium hydriforme. A phylogenomic analysis, using for the first time to our knowledge, a taxonomic sampling that represents the breadth of myxozoan diversity, including four newly generated myxozoan assemblies, confirms that myxozoans are cnidarians and are a sister taxon to P. hydriforme. Estimations of genome size reveal that myxozoans have one of the smallest reported animal genomes. Gene enrichment analyses show depletion of expressed genes in categories related to development, cell differentiation, and cell–cell communication. In addition, a search for candidate genes indicates that myxozoans lack key elements of signaling pathways and transcriptional factors important for multicellular development. Our results suggest that the degeneration of the myxozoan body plan from a free-living cnidarian to a microscopic parasitic cnidarian was accompanied by extreme reduction in genome size and gene content

    Arc Deformation and Marginal Basin Opening: Japan Sea as a Case Study

    No full text
    Laurent Jolivet est est Professeur à l'Université d'Orléans depuis le 1er Septembre 2009International audienceWe discuss the opening mechanism of the Japan Sea in Miocene time using (1) tectonic and published paleomagnetic data along the eastern margin from the north of Hokkaido Island to Sado Island, (2) a mechanical model which is tested by small-scale physical modeling, and (3) crustal structure and bathymetric features in the Japan Sea which constrain our kinematic model and preopening reconstructions. Our main conclusions are the following. The eastern margin of the Japan Sea was, as a whole, a dextral shear zone about 100 km wide. This conclusion is supported by the existence of a ductile dextral shear zone in Central Hokkaido (Hidaka Mountains) and associated brittle deformation in western Hokkaido and northeastern Honshu. The stress field during the opening (which ended about 12 Ma ago at the end of the middle Miocene) changes from right-lateral transpression in the north to right-lateral transtension in the south. The western margin, along the Korean peninsula, during the same period, also was an active dextral shear zone. Paleomagnetic results indicate that clockwise rotations occurred in the south during the opening and counterclockwise rotations in the north. We propose a model of right-lateral pull-apart deformation with clockwise rotations of rigid blocks in the southern transtensional domain and counterclockwise rotations in the transpressional one. Small-scale physical models show that the clockwise rotation in transtension is possible provided that the eastern boundary (Pacific side) is free of stress. The opening stopped and compression subsequently began about 12 Ma ago. Finally, we show that the dextral shear, which is distributed over the whole Japan Sea area, is accommodated by N-S trending right-lateral faults and rotation of blocks located between these right-lateral faults

    Tectonics of the Dalrymple Trough and uplift of the Murray Ridge (NW Indian Ocean)

    No full text
    International audienceThe Dalrymple Trough is a 150-km-long, 30-km-wide basin located at the northern termination of the Owen Fracture Zone (OFZ), which is the present-day active India-Arabia plate boundary. The Dalrymple Trough is closely associated with the Murray Ridge, a complex of prominent bathymetric highs located on its eastern flank. Recent multibeam mapping of the connection between the Dalrymple Trough and the OFZ revealed a horsetail structure, which suggests a close relationship between geological histories of both structures. However, the 3-6 Ma age of initiation of the OFZ contrasts with the commonly accepted Early Miocene emplacement of the Dalrymple Trough. Recent seismic lines document a new tectonic history of the Dalrymple Trough, involving two major episodes of deformation along the India-Arabia plate boundary at ~ 8-10 Ma and ~ 1.9 ± 0.9 Ma. The 8-10 Ma episode is marked by a system of folds linked to the main uplift of the southern Murray Ridge and the first uplift of the northern Murray Ridge. This episode is related to a global plate reorganization event in the Late Miocene, well expressed by intraplate deformation in the Central Indian Ocean. The Dalrymple Trough opened at ~ 1.9 ± 0.9 Ma subsequently to the formation of a stepover at the India-Arabia plate boundary, coeval with the regional M-unconformity in the Oman abyssal plain, which marks a structural reorganization of the Makran accretionary wedge, and the last uplift of the northern Murray Ridge

    Twenty-five years of geodetic measurements along the Tadjoura-Asal rift system, Djibouti, East Africa

    No full text
    International audienceSince most of Tadjoura-Asal rift system sits on dry land in the Afar depression near the triple junction between the Arabia, Somalia, and Nubia plates, it is an ideal natural laboratory for studying rifting processes. We analyze these processes in light of a time series of geodetic measurements from 1978 through. A network of about 30 GPS sites covers the Republic of Djibouti. Additional points were also measured in Yemen and Ethiopia. Stations lying in the Danakil block have almost the same velocity as Arabian plate, indicating that opening near the southern tip of the Red Sea is almost totally accommodated in the Afar depression. Inside Djibouti, the Asal-Ghoubbet rift system accommodates 16 ± 1 mm/yr of opening perpendicular to the rift axis and exhibits a pronounced asymmetry with essentially null deformation on its southwestern side and significant deformation on its northeastern side. This rate, slightly higher than the large-scale Arabia-Somalia motion (13 ± 1 mm/yr), suggests transient variations associated with relaxation processes following the Asal-Ghoubbet seismovolcanic sequence of 1978. Inside the rift, the deformation pattern exhibits a clear two-dimensional pattern. Along the rift axis, the rate decreases to the northwest, suggesting propagation in the same direction. Perpendicular to the rift axis, the focus of the opening is clearly shifted to the northeast, relative to the topographic rift axis, in the ''Petit Rift,'' a rift-in-rift structure, containing most of the active faults and the seismicity. Vertical motions, measured by differential leveling, show the same asymmetric pattern with a bulge of the northeastern shoulder. Although the inner floor of the rift is subsiding with respect to the shoulders, all sites within the rift system show uplift at rates varying from 0 to 10 mm/yr with respect to a far-field reference outside the rift
    • 

    corecore