198 research outputs found

    High precision measurement of the Dzyaloshinsky-Moriya interaction between two rare-earth ions in a solid

    Full text link
    We report on a direct measurement of the pair-wise anti-symmetric exchange interaction, known as the Dzyaloshinsky-Moriya interaction (DMI), in a Nd3+-doped YVO4 crystal. To this end we introduce a broadband electron spin resonance technique coupled with an optical detection scheme which selectively detects only one Nd3+-Nd3+ pair. Using this technique we can fully determine the spin-spin coupling tensor, allowing us to experimentally determine both the strength and direction of the DMI vector. We believe that this ability to fully determine the interaction Hamiltonian is of interest for studying the numerous magnetic phenomena where the DMI interaction is of fundamental importance, including multiferroics. We also detect a singlet-triplet transition within the pair, with a highly suppressed magnetic-field dependence, which suggests that such systems could form singlet-triplet qubits with long coherence times for quantum information applications

    Coherent spin control at the quantum level in an ensemble-based optical memory

    Full text link
    Long-lived quantum memories are essential components of a long-standing goal of remote distribution of entanglement in quantum networks. These can be realized by storing the quantum states of light as single-spin excitations in atomic ensembles. However, spin states are often subjected to different dephasing processes that limit the storage time, which in principle could be overcome using spin-echo techniques. Theoretical studies have suggested this to be challenging due to unavoidable spontaneous emission noise in ensemble-based quantum memories. Here we demonstrate spin-echo manipulation of a mean spin excitation of 1 in a large solid-state ensemble, generated through storage of a weak optical pulse. After a storage time of about 1 ms we optically read out the spin excitation with a high signal-to-noise ratio. Our results pave the way for long-duration optical quantum storage using spin-echo techniques for any ensemble-based memory.Comment: 5 pages, 2 figures, 1 tabl

    Impact of rare earth element clusters on the excited state lifetime evolution under irradiation in oxide glasses

    Get PDF
    International audienceRare earth doped active glasses and fibers can be exposed to ionizing radiations in space and nuclear applications. In this work, we analyze the evolution of 2 F 5/2 excited state lifetime in Yb 3+ ions in irradiated aluminosilicate glasses by electrons and γ rays. It is found that the variation of lifetimes depends on the Yb 3+ clusters content of the glasses for irradiation doses in the 10 2 – 1.5·10 9 Gy range. In particular, glasses with high clustering show a smaller decrease in lifetime with increasing radiation dose. This behavior is well correlated to the variation in paramagnetic defects concentration determined by electron paramagnetic resonance. This effect is also observed in Yb 3+ doped phosphate and Er 3+ doped aluminosilicate glasses, inferring that clustering plays an important role in irradiation induced quenching

    Efficient optical pumping using hyperfine levels in 145^{145}Nd3+^{3+}:Y2_2SiO5_5 and its application to optical storage

    Full text link
    Efficient optical pumping is an important tool for state initialization in quantum technologies, such as optical quantum memories. In crystals doped with Kramers rare-earth ions, such as erbium and neodymium, efficient optical pumping is challenging due to the relatively short population lifetimes of the electronic Zeeman levels, of the order of 100 ms at around 4 K. In this article we show that optical pumping of the hyperfine levels in isotopically enriched 145^{145}Nd3+^{3+}:Y2_2SiO5_5 crystals is more efficient, owing to the longer population relaxation times of hyperfine levels. By optically cycling the population many times through the excited state a nuclear-spin flip can be forced in the ground-state hyperfine manifold, in which case the population is trapped for several seconds before relaxing back to the pumped hyperfine level. To demonstrate the effectiveness of this approach in applications we perform an atomic frequency comb memory experiment with 33% storage efficiency in 145^{145}Nd3+^{3+}:Y2_2SiO5_5, which is on a par with results obtained in non-Kramers ions, e.g. europium and praseodymium, where optical pumping is generally efficient due to the quenched electronic spin. Efficient optical pumping in neodymium-doped crystals is also of interest for spectral filtering in biomedical imaging, as neodymium has an absorption wavelength compatible with tissue imaging. In addition to these applications, our study is of interest for understanding spin dynamics in Kramers ions with nuclear spin.Comment: 8 pages, 6 figure

    Towards highly multimode optical quantum memory for quantum repeaters

    Full text link
    Long-distance quantum communication through optical fibers is currently limited to a few hundreds of kilometres due to fiber losses. Quantum repeaters could extend this limit to continental distances. Most approaches to quantum repeaters require highly multimode quantum memories in order to reach high communication rates. The atomic frequency comb memory scheme can in principle achieve high temporal multimode storage, without sacrificing memory efficiency. However, previous demonstrations have been hampered by the difficulty of creating high-resolution atomic combs, which reduces the efficiency for multimode storage. In this article we present a comb preparation method that allows one to increase the multimode capacity for a fixed memory bandwidth. We apply the method to a 151^{151}Eu3+^{3+}-doped Y2_2SiO5_5 crystal, in which we demonstrate storage of 100 modes for 51 μ\mus using the AFC echo scheme (a delay-line memory), and storage of 50 modes for 0.541 ms using the AFC spin-wave memory (an on-demand memory). We also briefly discuss the ultimate multimode limit imposed by the optical decoherence rate, for a fixed memory bandwidth.Comment: 10 pages, 8 figure

    Hyperfine characterization and coherence lifetime extension in Pr3+:La2(WO4)3

    Get PDF
    Rare-earth ions in dielectric crystals are interesting candidates for storing quantum states of photons. A limiting factor on the optical density and thus the conversion efficiency is the distortion introduced in the crystal by doping elements of one type into a crystal matrix of another type. Here, we investigate the system Pr3+:La2(WO4)3, where the similarity of the ionic radii of Pr and La minimizes distortions due to doping. We characterize the praseodymium hyperfine interaction of the ground state (3H4) and one excited state (1D2) and determine the spin Hamiltonian parameters by numerical analysis of Raman-heterodyne spectra, which were collected for a range of static external magnetic field strengths and orientations. On the basis of a crystal field analysis, we discuss the physical origin of the experimentally determined quadrupole and Zeeman tensor characteristics. We show the potential for quantum memory applications by measuring the spin coherence lifetime in a magnetic field that is chosen such that additional magnetic fields do not shift the transition frequency in first order. Experimental results demonstrate a spin coherence lifetime of 158 ms - almost three orders of magnitude longer than in zero field.Comment: 14 pages, 6 figure

    Characterization of the hyperfine interaction of the excited 5^5D0_0 state of Eu3+^{3+}:Y2_2SiO5_5

    Full text link
    We characterize the Europium (Eu3+^{3+}) hyperfine interaction of the excited state (5^5D0_0) and determine its effective spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method is used to measure all hyperfine splittings under weak external magnetic field (up to 10 mT) for various field orientations. On the basis of the determined Hamiltonian we discuss the possibility to predict optical transition probabilities between hyperfine levels for the 7^7F05_{0} \longleftrightarrow ^5D0_{0} transition. The obtained results provide necessary information to realize an optical quantum memory scheme which utilizes long spin coherence properties of 151^{151}Eu3+^{3+}:Y2_2SiO5_5 material under external magnetic field
    corecore