70 research outputs found

    Impact of percutaneous mitral valve repair using the MitraClip™ system on ventricular arrhythmias and ICD therapies

    Get PDF
    Transcatheter edge-to-edge repair (TEER) using the MitraClip™ device has been established as a suitable alternative to mitral valve surgery in patients with severe mitral regurgitation (MR) and high or prohibitive surgical risk. Only limited information regarding the impact of TEER on ventricular arrhythmias (VA) has been reported. The aim of the present study was to assess the impact of TEER using the MitraClip(TM) device on the burden of VA and ICD (Implantable Cardioverter Defibrillator) therapies. Among 600 MitraClip(TM) implantations performed in our clinic between September 2009 and October 2018, we identified 86 patients with successful TEER and an active implantable cardiac device (pacemaker, ICD, CRT-P/D (Cardiac Resynchronization Therapy-Pacemaker/Defibrillator)) eligible for retrospective VA analyses. These patients presented with mainly functional MR (81.4%) and severely reduced left ventricular ejection fraction (mean LVEF 22.1% ± 10.3%). The observation period comprised 456 ± 313 days before and 424 ± 287 days after TEER. The burden of ventricular arrhythmias (sustained ventricular tachycardia (sVT) and ventricular fibrillation (VF)) was significantly reduced after TEER (0.85 ± 3.47 vs. 0.43 ± 2.03 events per patient per month, p = 0.01). Furthermore, the rate of ICD therapies (anti-tachycardia pacing (ATP) and ICD shock) decreased significantly after MitraClip(TM) implantation (1.0 ± 3.87 vs. 0.32 ± 1.41, p = 0.014). However, reduction of VA burden did not result in improved two-year survival in this patient cohort with severely reduced LVEF. Mitral valve TEER using the MitraClip™ device was associated with a significant reduction of ventricular arrhythmias and ICD therapies

    Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila.

    Get PDF
    Neuroendocrine systems in animals maintain organismal homeostasis and regulate stress response. Although a great deal of work has been done on the neuropeptides and hormones that are released and act on target organs in the periphery, the synaptic inputs onto these neuroendocrine outputs in the brain are less well understood. Here, we use the transmission electron microscopy reconstruction of a whole central nervous system in the Drosophila larva to elucidate the sensory pathways and the interneurons that provide synaptic input to the neurosecretory cells projecting to the endocrine organs. Predicted by network modeling, we also identify a new carbon dioxide-responsive network that acts on a specific set of neurosecretory cells and that includes those expressing corazonin (Crz) and diuretic hormone 44 (Dh44) neuropeptides. Our analysis reveals a neuronal network architecture for combinatorial action based on sensory and interneuronal pathways that converge onto distinct combinations of neuroendocrine outputs

    Phase II Trial of Temsirolimus for Relapsed/Refractory Primary CNS Lymphoma

    Get PDF
    Purpose: In this phase II study (NCT00942747), temsirolimus was tested in patients with relapsed or refractory primary CNS lymphoma (PCNSL). Patients and Methods: Immunocompetent adults with histologically confirmed PCNSL after experiencing high-dose methotrexate-based chemotherapy failure who were not eligible for or had experienced high-dose chemotherapy with autologous stem-cell transplant failure were included. The first cohort (n = 6) received 25 mg temsirolimus intravenously once per week. All consecutive patients received 75 mg intravenously once per week. Results: Thirty-seven eligible patients (median age, 70 years) were included whose median time since their last treatment was 3.9 months (range, 0.1 to 14.6 months). Complete response was seen in five patients (13.5%), complete response unconfirmed in three (8%), and partial response in 12 (32.4%) for an overall response rate of 54%. Median progression-free survival was 2.1 months (95% CI, 1.1 to 3.0 months). The most frequent Common Toxicity Criteria ≥ 3° adverse event was hyperglycemia in 11 (29.7%) patients, thrombocytopenia in eight (21.6%), infection in seven (19%), anemia in four (10.8%), and rash in three (8.1%). Fourteen blood/CSF pairs were collected in nine patients (10 pairs in five patients in the 25-mg cohort and four pairs in four patients in the 75-mg cohort). The mean maximum blood concentration was 292 ng/mL for temsirolimus and 37.2 ng/mL for its metabolite sirolimus in the 25-mg cohort and 484 ng/mL and 91.1 ng/mL, respectively, in the 75-mg cohort. Temsirolimus CSF concentration was 2 ng/mL in one patient in the 75-mg cohort; in all others, no drug was found in their CSF. Conclusion: Single-agent temsirolimus at a weekly dose of 75 mg was found to be active in relapsed/refractory patients with PCNSL; however, responses were usually short lived

    The connectome of the adult Drosophila mushroom body provides insights into function.

    Get PDF
    Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory, and activity regulation. Here, we identify new components of the MB circuit in Drosophila, including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work

    The connectome of the adult Drosophila mushroom body provides insights into function

    Get PDF
    Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory, and activity regulation. Here, we identify new components of the MB circuit in Drosophila, including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work

    Imaging early endothelial inflammation following stroke by core shell silica superparamagnetic glyconanoparticles that target selectin

    Get PDF
    Activation of the endothelium is a pivotal first step for leukocyte migration into the diseased brain. Consequently, imaging this activation process is highly desirable. We synthesized carbohydrate-functionalized magnetic nanoparticles that bind specifically to the endothelial transmembrane inflammatory proteins E and P selectin. Magnetic resonance imaging revealed that the targeted nanoparticles accumulated in the brain vasculature following acute administration into a clinically relevant animal model of stroke, though increases in selectin expression were observed in both brain hemispheres. Nonfunctionalized naked particles also appear to be a plausible agent to target the ischemic vasculature. The importance of these findings is discussed regarding the potential for translation into the clinic

    Information flow, cell types and stereotypy in a full olfactory connectome

    Get PDF
    Funder: Howard Hughes Medical Institute; FundRef: http://dx.doi.org/10.13039/100000011The hemibrain connectome provides large-scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the Drosophila olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter- versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains
    • …
    corecore