6 research outputs found

    Magnetic Resonance Imaging Studies of Angiogenesis and Stem Cell Implantations in Rodent Models of Cerebral Lesions

    Get PDF
    Molecular biology and stem cell research have had an immense impact on our understanding of neurological diseases, for which little or no therapeutic options exist today. Manipulation of the underlying disease-specific molecular and cellular events promises more efficient therapy. Angiogenesis, i.e. the regrowth of new vessels from an existing vascular network, has been identified as a key contributor for the progression of tumor and, more recently, for regeneration after stroke. Donation of stem cells has proved beneficial to treat cerebral lesions. However, before angiogenesis-targeted and stem cell therapies can safely be used in patients, underlying biological processes need to be better understood in animal models. Noninvasive imaging is essential in order to follow biological processes or stem cell fate in both space and time. We optimized steady state contrast enhanced magnetic resonance imaging (SSCE MRI) to monitor vascular changes in rodent models of tumor and stroke. A modification of mathematical modeling of MR signal from the vascular network allowed for the first time simultaneous measurements of relaxation time T2 and SSCE MRI derived blood volume, vessel size, and vessel density. Limitations of SSCE MRI in tissues with high blood volume and non-cylindrically shaped vessels were explored. SSCE MRI detected angiogenesis and response to anti-angiogenic treatment in two rodent tumor models. In both tumor models, reduction of blood volume in small vessels and a shift towards larger vessels was observed upon treatment. After stroke, decreased vessel density and increased vessel size was found, which was most pronounced one week after the infarct. This is in agreement with two initial, recently published clinical studies. Overall, very little signs of angiogenesis were found. Furthermore, superparamagnetic iron oxide (SPIO) labels were used to study neural stem cells (NSCs) in vivo with MRI. SPIO labeling revealed a decrease in volume of intracerebral grafts over 4 months, assessed by T2* weighted MRI. Since SPIO labels are challenging to quantify and their MR contrast can easily be confounded, we explored the potential of in vivo 19F MRI of 19F labeled NSCs. Hardware was developed for in vitro and in vivo 19F MRI. NSCs were labeled with little effect on cell function and in vivo detection limits were determined at ~10,000 cells within 1 h imaging time. A correction for the inhomogeneous magnetic field profile of surface coils was validated in vitro and applied for both sensitive and quantitative in vivo cell imaging. As external MRI labels do not provide information on NSC function we combined 19F MRI with bioluminescence imaging (BLI). The BLI signal allowed quantification of viable cells whereas 19F MRI provided graft location and density in 3D over 4 weeks both in the healthy and stroke brain. A massive decrease in number of viable cells was detected independent of the microenvironment. This indicates that functional recovery reported in many studies of NSC implantation after stroke, is rather due to release of factors by NSCs than direct tissue replacement. In light of these indirect effects, combination of the imaging methods developed in this dissertation with other functional and structural imaging methods is suggested in order to further elucidate interactions of NSCs with the vasculature

    In-Vivo Visualization of Tumor Microvessel Density and Response to Anti-Angiogenic Treatment by High Resolution MRI in Mice

    Get PDF
    Purpose: Inhibition of angiogenesis has shown clinical success in patients with cancer. Thus, imaging approaches that allow for the identification of angiogenic tumors and the detection of response to anti-angiogenic treatment are of high clinical relevance. Experimental Design: We established an in vivo magnetic resonance imaging (MRI) approach that allows us to simultaneously image tumor microvessel density and tumor vessel size in a NSCLC model in mice. Results: Using microvessel density imaging we demonstrated an increase in microvessel density within 8 days after tumor implantation, while tumor vessel size decreased indicating a switch from macro- to microvessels during tumor growth. Moreover, we could monitor in vivo inhibition of angiogenesis induced by the angiogenesis inhibitor PTK787, resulting in a decrease of microvessel density and a slight increase in tumor vessel size. Conclusions: We present an in vivo imaging approach that allows us to monitor both tumor microvessel density and tumor vessel size in the tumor. Moreover, this approach enables us to assess, early-on, treatment effects on tumor microvessel density as well as on tumor vessel size. Thus, this imaging-based strategy of validating anti-angiogenic treatment effects ha

    Spatio-temporal dynamics, differentiation and viability of human neural stem cells after implantation into neonatal rat brain.

    No full text
    Neural stem cells (NSCs) have attracted major research interest due to their potential use in cell replacement therapy. In patients, human cells are the preferred choice, one source of human NSCs being the brain of fetuses. The aims of the present study were to explore the long-term differentiation, mobility and viability of NSCs derived from the human fetal striatum in response to intracerebral implantation. To investigate long-term spatio-temporal and functional dynamics of grafts in vivo by magnetic resonance imaging, these cells were labeled with superparamagnetic iron oxide (SPIO) nanoparticles prior to implantation. SPIO-labeling of human NSCs left the quantitative profile of the proliferation, cell composition and differentiation capacity of the cells in vitro unaltered. Also after transplantation, the phenotypes after long-term cell differentiation were not significantly different from naïve cells. Upon transplantation, we detected a hypointensity corresponding to the striatal graft location in all animals and persisting for at least 4 months. The hypointense signal appeared visually similar both in location and in volume over time. However, quantitative volumetric analysis showed that the detectable, apparent graft volume decreased significantly from 3 to 16 weeks. Finally, the human NSCs were not proliferating after implantation, indicating lack of tumor formation. These cells are thus a promising candidate for translationally relevant investigations for stem cell-based regenerative therapies

    Comparison of the image derived values of MDI and VSI to CD31 positive endothelial cell staining.

    No full text
    <p>(A) a vehicle treated (upper row) tumor presenting a high microvessel density index (MDI (1/mm<sup>2</sup>)) in MRI and a low vessel index (VSI (µm)). The PTK787-treated tumor (lower row) presents low MDI values with high VSI values. (B) correlation between CD31 positive vessels per area unit and the imaged derived MDI values (n = 10).</p

    Longitudinal investigation of vascular dynamics during tumor growth.

    No full text
    <p>Simultaneous in vivo monitoring of tumor depiction with T2-weighted imaging, microvessel density (MDI), vessel size (VSI) and apparent diffusion coefficient (ADC) during tumor growth on day 1, day 4, day 8, day 14, and day 21 (D1, D4, D8, D14, D21).</p
    corecore