3,234 research outputs found

    Global Reef Expedition: Cook Islands Final Report

    Get PDF
    The Khaled bin Sultan Living Oceans Foundation embarked on the Global Reef Expedition—the largest coral reef survey and mapping expedition in history—to study the coral reef crisis on a global scale. As part of the 5-year expedition, an international team of scientists traveled to the Cook Islands in 2013 to assess the health and resiliency of their coral reefs. The Global Reef Expedition: Cook Islands Final Report provides a comprehensive summary of the Foundation's research findings from the Cook Islands research mission, along with recommendations for preserving these reefs for the use and enjoyment of future generations.This report provides scientists, managers, and stakeholders with information on the status of corals and reef fish in the Cook Islands and helps further our understanding of the resiliency of these fragile marine ecosystems. Coral reefs face many threats, including pollution, climate change, overfishing, storm damage, and outbreaks of crown-of-thorns starfish. In order to see how these threats impacted reefs, KSLOF worked closely with local leaders, government officials, and members of the Cook Islands Marine Park Steering Committee to study the reefs. Together, they completed over 400 surveys of the coral and reef fish communities surrounding Rarotonga, Aitutaki, and Palmerston Atoll, and collected information to create over 400 km2 of high-resolution habitat and bathymetric maps of the seafloor.

    The Solar Neighborhood. XXXIV. A Search for Planets Orbiting Nearby M Dwarfs using Astrometry

    Get PDF
    Astrometric measurements are presented for seven nearby stars with previously detected planets: six M dwarfs (GJ 317, GJ 667C, GJ 581, GJ 849, GJ 876, and GJ 1214) and one K dwarf (BD -10 3166). Measurements are also presented for six additional nearby M dwarfs without known planets, but which are more favorable to astrometric detections of low mass companions, as well as three binary systems for which we provide astrometric orbit solutions. Observations have baselines of three to thirteen years, and were made as part of the RECONS long-term astrometry and photometry program at the CTIO/SMARTS 0.9m telescope. We provide trigonometric parallaxes and proper motions for all 16 systems, and perform an extensive analysis of the astrometric residuals to determine the minimum detectable companion mass for the 12 M dwarfs not having close stellar secondaries. For the six M dwarfs with known planets, we are not sensitive to planets, but can rule out the presence of all but the least massive brown dwarfs at periods of 2 - 12 years. For the six more astrometrically favorable M dwarfs, we conclude that none have brown dwarf companions, and are sensitive to companions with masses as low as 1 MJupM_{Jup} for periods longer than two years. In particular, we conclude that Proxima Centauri has no Jovian companions at orbital periods of 2 - 12 years. These results complement previously published M dwarf planet occurrence rates by providing astrometrically determined upper mass limits on potential super-Jupiter companions at orbits of two years and longer. As part of a continuing survey, these results are consistent with the paucity of super-Jupiter and brown dwarf companions we find among the over 250 red dwarfs within 25 pc observed longer than five years in our astrometric program.Comment: 18 pages, 5 figures, 4 tables, accepted for publication in A

    Precise Stellar Radial Velocities of an M Dwarf with a Michelson Interferometer and a Medium-resolution Near-infrared Spectrograph

    Full text link
    Precise near-infrared radial velocimetry enables efficient detection and transit verification of low-mass extrasolar planets orbiting M dwarf hosts, which are faint for visible-wavelength radial velocity surveys. The TripleSpec Exoplanet Discovery Instrument, or TEDI, is the combination of a variable-delay Michelson interferometer and a medium-resolution (R=2700) near-infrared spectrograph on the Palomar 200" Hale Telescope. We used TEDI to monitor GJ 699, a nearby mid-M dwarf, over 11 nights spread across 3 months. Analysis of 106 independent observations reveals a root-mean-square precision of less than 37 m/s for 5 minutes of integration time. This performance is within a factor of 2 of our expected photon-limited precision. We further decompose the residuals into a 33 m/s white noise component, and a 15 m/s systematic noise component, which we identify as likely due to contamination by telluric absorption lines. With further development this technique holds promise for broad implementation on medium-resolution near-infrared spectrographs to search for low-mass exoplanets orbiting M dwarfs, and to verify low-mass transit candidates.Comment: 55 pages and 13 figures in aastex format. Accepted by PAS

    The future of upper extremity rehabilitation robotics: research and practice

    Full text link
    The loss of upper limb motor function can have a devastating effect on people’s lives. To restore upper limb control and functionality, researchers and clinicians have developed interfaces to interact directly with the human body’s motor system. In this invited review, we aim to provide details on the peripheral nerve interfaces and brain‐machine interfaces that have been developed in the past 30 years for upper extremity control, and we highlight the challenges that still remain to transition the technology into the clinical market. The findings show that peripheral nerve interfaces and brain‐machine interfaces have many similar characteristics that enable them to be concurrently developed. Decoding neural information from both interfaces may lead to novel physiological models that may one day fully restore upper limb motor function for a growing patient population.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155489/1/mus26860_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155489/2/mus26860.pd

    Intramolecular bonds resolved on a semiconductor surface

    Get PDF
    Noncontact atomic force microscopy (NC-AFM) is now routinely capable of obtaining submolecular resolution, readily resolving the carbon backbone structure of planar organic molecules adsorbed on metal substrates. Here we show that the same resolution may also be obtained for molecules adsorbed on a reactive semiconducting substrate. Surprisingly, this resolution is routinely obtained without the need for deliberate tip functionalization. Intriguingly, we observe two chemically distinct apex types capable of submolecular imaging. We characterize our tip apices by “inverse imaging” of the silicon adatoms of the Si(111)−7×7 surface and support our findings with detailed density functional theory (DFT) calculations. We also show that intramolecular resolution on individual molecules may be readily obtained at 78 K, rather than solely at 5 K as previously demonstrated. Our results suggest a wide range of tips may be capable of producing intramolecular contrast for molecules adsorbed on semiconductor surfaces, leading to a much broader applicability for submolecular imaging protocols

    A millimeter-wave kinetic inductance detector camera for long-range imaging through optical obscurants

    Get PDF
    Millimeter-wave imaging provides a promising option for long-range target detection through optical obscurants such as fog, which often occur in marine environments. Given this motivation, we are currently developing a 150 GHz polarization-sensitive imager using a relatively new type of superconducting pair-breaking detector, the kinetic inductance detector (KID). This imager will be paired with a 1.5 m telescope to obtain an angular resolution of 0.09° over a 3.5° field of view using 3,840 KIDs. We have fully characterized a prototype KID array, which shows excellent performance with noise strongly limited by the irreducible fluctuations from the ambient temperature background. Full-scale KID arrays are now being fabricated and characterized for a planned demonstration in a maritime environment later this year

    Automated extraction of single H atoms with STM: tip state dependency

    Get PDF
    The atomistic structure of the tip apex plays a crucial role in performing reliable atomic-scale surface and adsorbate manipulation using scanning probe techniques. We have developed an automated extraction routine for controlled removal of single hydrogen atoms from the H:Si(100) surface. The set of atomic extraction protocols detect a variety of desorption events during scanning tunneling microscope (STM)-induced modification of the hydrogen-passivated surface. The influence of the tip state on the probability for hydrogen removal was examined by comparing the desorption efficiency for various classifications of STM topographs (rows, dimers, atoms, etc). We find that dimer-row-resolving tip apices extract hydrogen atoms most readily and reliably (and with least spurious desorption), while tip states which provide atomic resolution counter-intuitively have a lower probability for single H atom removal

    Comparative effectiveness of endovascular versus open repair of ruptured abdominal aortic aneurysm in the Medicare population

    Get PDF
    ObjectiveEndovascular aortic repair (EVAR) for abdominal aortic aneurysm (AAA) is increasingly used for emergent treatment of ruptured AAA (rAAA). We sought to compare the perioperative and long-term mortality, procedure-related complications, and rates of reintervention of EVAR vs open aortic repair of rAAA in Medicare beneficiaries.MethodsWe examined perioperative and long-term mortality and complications after EVAR or open aortic repair performed for rAAA in all traditional Medicare beneficiaries discharged from a United States hospital from 2001 to 2008. Patients were matched by propensity score on baseline demographics, coexisting conditions, admission source, and hospital volume of rAAA repair. Sensitivity analyses were performed to evaluate the effect of bias that might have resulted from unmeasured confounders.ResultsOf 10,998 patients with repaired rAAA, 1126 underwent EVAR and 9872 underwent open repair. Propensity score matching yielded 1099 patient pairs. The average age was 78 years, and 72.4% were male. Perioperative mortality was 33.8% for EVAR and 47.7% for open repair (P < .001), and this difference persisted for >4 years. At 36 months, EVAR patients had higher rates of AAA-related reinterventions than open repair patients (endovascular reintervention, 10.9% vs 1.5%; P < .001), whereas open patients had more laparotomy-related complications (incisional hernia repair, 1.8% vs 6.2%; P < .001; all surgical complications, 4.4% vs 9.1%; P < .001). Use of EVAR for rAAA increased from 6% of cases in 2001 to 31% in 2008, whereas during the same interval, overall 30-day mortality for admission for rAAA, regardless of treatment, decreased from 55.8% to 50.9%.ConclusionsEVAR for rAAA is associated with lower perioperative and long-term mortality in Medicare beneficiaries. Increasing adoption of EVAR for rAAA is associated with an overall decrease in mortality of patients hospitalized for rAAA during the last decade

    Epirubicin With Cyclophosphamide Followed by Docetaxel With Trastuzumab and Bevacizumab as Neoadjuvant Therapy for HER2-Positive Locally Advanced Breast Cancer or as Adjuvant Therapy for HER2-Positive Pathologic Stage III Breast Cancer: A Phase II Trial of the NSABP Foundation Research Group, FB-5

    Get PDF
    Background The purpose of this study was to determine the cardiac safety and clinical activity of trastuzumab and bevacizumab with docetaxel after epirubicin with cyclophosphamide (EC) in patients with HER2-positive locally advanced breast cancer (LABC) or pathologic stage 3 breast cancer (PS3BC). Patients and Methods Patients received every 3 week treatment with 4 cycles of EC (90/600 mg/m2) followed by 4 cycles of docetaxel (100 mg/m2). Targeted therapy with standard-dose trastuzumab with bevacizumab 15 mg/kg was given for a total of 1 year. Coprimary end points were (1) rate of cardiac events (CEs) in all patients defined as clinical congestive heart failure with a significant decrease in left ventricular ejection fraction or cardiac deaths; and (2) pathologic complete response (pCR) in breast and nodes in the neoadjuvant cohort. An independent cardiac review panel determined whether criteria for a CE were met. Results A total of 105 patients were accrued, 76 with LABC treated with neoadjuvant therapy and 29 with PS3BC treated with adjuvant therapy. Median follow-up was 59.2 months. Among 99 evaluable patients for cardiac safety, 4 (4%; 95% confidence interval [CI], 1.1%-10.0%) met CE criteria. The pCR percentage in LABC patients was 46% (95% CI, 34%-59%). Five-year recurrence-free survival (RFS) and overall survival (OS) for all patients was 79.9% and 90.8%, respectively. Conclusion The regimen met predefined criteria for activity of interest with an acceptable rate of CEs. Although the pCR percentage was comparable with chemotherapy regimens with trastuzumab alone the high RFS and OS are of interest in these high-risk populations
    corecore