2,742 research outputs found

    Foreword

    Get PDF

    Numerical optimization of integrating cavities for diffraction-limited millimeter-wave bolometer arrays

    Get PDF
    Far-infrared to millimeter-wave bolometers designed to make astronomical observations are typically encased in integrating cavities at the termination of feedhorns or Winston cones. This photometer combination maximizes absorption of radiation, enables the absorber area to be minimized, and controls the directivity of absorption, thereby reducing susceptibility to stray light. In the next decade, arrays of hundreds of silicon nitride micromesh bolometers with planar architectures will be used in ground-based, suborbital, and orbital platforms for astronomy. The optimization of integrating cavity designs is required for achieving the highest possible sensitivity for these arrays. We report numerical simulations of the electromagnetic fields in integrating cavities with an infinite plane-parallel geometry formed by a solid reflecting backshort and the back surface of a feedhorn array block. Performance of this architecture for the bolometer array camera (Bolocam) for cosmology at a frequency of 214 GHz is investigated. We explore the sensitivity of absorption efficiency to absorber impedance and backshort location and the magnitude of leakage from cavities. The simulations are compared with experimental data from a room-temperature scale model and with the performance of Bolocam at a temperature of 300 mK. The main results of the simulations for Bolocam-type cavities are that (1) monochromatic absorptions as high as 95% are achievable with <1% cross talk between neighboring cavities, (2) the optimum absorber impedances are 400 Ω/sq, but with a broad maximum from ~150 to ~700 Ω/sq, and (3) maximum absorption is achieved with absorber diameters ≄1.5λ. Good general agreement between the simulations and the experiments was found

    A strain rate dependent anisotropic hardening model and its validation through deep drawing experiments

    Get PDF
    In the present work, a modified version of the widely used Yld2000-2d yield function and its implementation into the commercial FE-code LS-Dyna is presented. The difference to the standard formulation lies in the dependency of the function parameters on the equivalent plastic strain. Furthermore, strain rate dependency is incorporated. After a detailed description of the model and the identification of the parameters, the numerical implementation i.e., the stress-update algorithm used for the implementation is explained. In order to validate the model, two different materials, namely Formalexℱ5x, a 5182-based aluminum alloy and a DC05 mild steel were characterized. The results of the tensile and hydraulic bulge tests are presented and used for the parameter identification. The experimental curves are reproduced by means of one element tests using the standard and modified model to demonstrate the benefit of the modifications. For validation purposes, cross die geometries were drawn with both materials. The outer surface strains were measured with an optical measurement system. The measured major and minor strains were compared to the results of simulations using the standard and the modified Yld2000-2d model. A significant improvement in prediction accuracy has been demonstrated

    A Fluctuation Analysis of the Bolocam 1.1mm Lockman Hole Survey

    Full text link
    We perform a fluctuation analysis of the 1.1mm Bolocam Lockman Hole Survey, which covers 324 square arcmin to a very uniform point source-filtered RMS noise level of 1.4 mJy/beam. The fluctuation analysis has the significant advantage of utilizing all of the available data. We constrain the number counts in the 1-10 mJy range, and derive significantly tighter constraints than in previous work: the power-law index is 2.7 (+0.18, -0.15), while the amplitude is equal to 1595 (+85,-238) sources per mJy per square degree, or N(>1 mJy) = 940 (+50,-140) sources/square degree (95% confidence). Our results agree extremely well with those derived from the extracted source number counts by Laurent et al (2005). Our derived normalization is about 2.5 times smaller than determined by MAMBO at 1.2mm by Greve et al (2004). However, the uncertainty in the normalization for both data sets is dominated by the systematic (i.e., absolute flux calibration) rather than statistical errors; within these uncertainties, our results are in agreement. We estimate that about 7% of the 1.1mm background has been resolved at 1 mJy.Comment: To appear in the Astrophysical Journal; 22 pages, 9 figure
    • 

    corecore