66 research outputs found

    Maternal serum cytokine concentrations in healthy pregnancy and preeclampsia

    Get PDF
    The maternal immune response is essential for successful pregnancy, promoting immune tolerance to the fetus while maintaining innate and adaptive immunity. Uncontrolled, increased proinflammatory responses are a contributing factor to the pathogenesis of preeclampsia. The Th1/Th2 cytokine shift theory, characterised by bias production of Th2 anti-inflammatory cytokine midgestation, was frequently used to reflect the maternal immune response in pregnancy. This theory is simplistic as it is based on limited information and does not consider the role of other T cell subsets, Th17 and Tregs. A range of maternal peripheral cytokines have been measured in pregnancy cohorts, albeit the changes in individual cytokine concentrations across gestation is not well summarised. Using available data, this review was aimed at summarising changes in individual maternal serum cytokine concentrations throughout healthy pregnancy and evaluating their association with preeclampsia. We report that TNF-α increases as pregnancy progresses, IL-8 decreases in the second trimester, and IL-4 concentrations remain consistent throughout gestation. Lower second trimester IL-10 concentrations may be an early predictor for developing preeclampsia. Proinflammatory cytokines (TNF-α, IFN-γ, IL-2, IL-8, and IL-6) are significantly elevated in preeclampsia. More research is required to determine the usefulness of using cytokines, particularly IL-10, as early biomarkers of pregnancy health

    Dietary Interventions in the Management of Fibromyalgia: A Systematic Review and Best-Evidence Synthesis

    Get PDF
    Fibromyalgia syndrome (FMS) is characterised by chronic widespread pain alongside fatigue, poor sleep quality and numerous comorbidities. It is estimated to have a worldwide prevalence of 1.78%, with a predominance in females. Treatment interventions for fibromyalgia have limited success, leading to many patients seeking alternative forms of treatment, including modifications to their diet and lifestyle. The effectiveness of dietary changes in fibromyalgia has not been widely researched or evaluated. This systematic review identified twenty-two studies, including 18 randomised control trials (RCTs) and four cohort studies which were eligible for inclusion. In total these studies investigated 17 different nutritional interventions. Significant improvements in reported pain were observed for those following a vegan diet, as well as with the low fermentable oligo di-mono-saccharides and polyols (FODMAP) diets. Supplementation with Chlorella green algae, coenzyme Q10, acetyl-l-carnitine or a combination of vitamin C and E significantly improved measures of pain. Interpretation of these studies was limited due to the frequent poor quality of the study design, the wide heterogeneity between studies, the small sample size and a high degree of bias. Therefore, there is insufficient evidence to recommend any one particular nutritional intervention for the management of fibromyalgia and further research is needed

    Protein hydrolysates from boarfish (Capros aper) and Atlantic salmon (Salmo salar) skin gelatin improve metabolic control in genetically obese diabetic (ob/ob) mice

    Get PDF
    There is increasing interest in dietary protein for management of Type 2 diabetes mellitus (T2DM) and obesity. The effects of twice-daily oral administration of a salmon skin gelatin hydrolysate (SSGH, 50 mg/kg), boarfish protein hydrolysate (BPH, (50 mg/kg), metformin (200 mg/kg), or saline control, were investigated in ob/ob mice. Non-fasting blood glucose was significantly reduced with SSGH (p < 0.01), BPH (p < 0.001) and metformin (p < 0.001), which were reflected in reductions in glycated haemoglobin (HbA1c) (p < 0.001, p < 0.01 and p < 0.01, respectively). Responses to oral and intraperitoneal glucose tolerance were improved (p < 0.05–0.01), as well as circulating plasma lipid profiles (p < 0.05–0.001). Chronic BPH treatment increased circulating plasma insulin (p < 0.01), whereas SSGH improved insulin sensitivity (p < 0.05), versus respective controls. All treatments significantly reduced energy intake (p < 0.05–0.001) versus (ob/ob) controls, without affecting overall bodyweight. These findings suggest that fish hydrolysates mediate potent anti-diabetic actions similar to metformin and might be suitable for the management and prevention of T2DM

    Associations of long chain polyunsaturated fatty acids with bone mineral density and bone turnover in postmenopausal women

    Get PDF
    PURPOSE: The immunomodulatory properties of n-3 long chain polyunsaturated fatty acids (LCPUFA) are reported to reduce bone loss through alteration of bone remodelling and n-3 LCPUFA, therefore, may benefit bone health in post-menopausal women, a vulnerable group at high risk of osteoporosis. METHODS: Measures of bone mineral density (BMD) were determined using dual energy X-ray absorptiometry (DEXA) in 300 post-menopausal women. The bone turnover markers osteocalcin (OC), C-terminal telopeptides of type 1 collagen (CTX) and total alkaline phosphatase were quantified in serum along with urinary creatinine corrected deoxypyridinoline (DPD/Cr) and CTX/Cr and the CTX:OC ratio calculated. Total serum n-6 PUFA (LA + AA) and n − 3 LCPUFA (ALA + EPA + DPA + DHA) were measured and the n − 6:n − 3 ratio was calculated. RESULTS: Mean (SD) age and body mass index (BMI) were 61 (6.4) years and 27.4 (4.8) kg/m(2), respectively with participants being 12.6 (7.6) years post-menopause. Multiple regression analysis identified no association between n-3 LCPUFA and any of the measures of T-score or BMD albeit a significant positive association between total n − 3 LCPUFA and femur BMD (β = 0.287; p = 0.043) was observed within those women with a low n − 6:n − 3 ratio. There was a significant inverse association between ALA and urinary DPD/Cr (β = − 0.141; p = 0.016). CONCLUSION: A favourable low n − 6:n − 3 ratio was associated with higher femur BMD and a higher n − 3 LCPUFA (ALA) was associated with lower bone resorption. These results support a beneficial role for n − 3 LCPUFA in reducing postmenopausal bone resorption and favourably influencing BMD. TRIAL NUMBER & DATE OF REGISTRATION: ISRCTN63118444, 2nd October 2009, “Retrospectively registered”

    Mercury in Hair Is Inversely Related to Disease Associated Damage in Systemic Lupus Erythematosus.

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease, and environmental factors are proposed to exacerbate existing symptoms. One such environmental factor is mercury. The aim of this study was to investigate the relationship between exposure to mercury (Hg) and disease activity and disease associated damage in Total Hg concentrations in hair and urine were measured in 52 SLE patients. Dental amalgams were quantified. Disease activity was assessed using three indexes including the British Isles Lupus Assessment Group Index (BILAG). Disease associated damage was measured using the Systemic Lupus International Collaborating Clinics/American College of Rheumatology SLICC/ACR Damage Index. Pearson’s correlation identified a significant negative correlation between hair Hg and BILAG (r = −0.323, p = 0.029) and SLICC/ACR (r = −0.377, p = 0.038). Multiple regression analysis identified hair Hg as a significant predictor of disease associated damage as determined by SLICC/ACR (β = −0.366, 95% confidence interval (CI): −1.769, −0.155 p = 0.019). Urinary Hg was not related to disease activity or damage. Fish consumption is the primary route of MeHg exposure in humans and the inverse association of hair Hg with disease activity observed here might be explained by the anti-inflammatory effects of n-3 long chain polyunsaturated fatty acids also found in fish

    Design and fabrication of enhanced lateral growth for dislocation reduction in GaN using nanodashes

    Get PDF
    The semiconductor gallium nitride is the material at the centre of energy-efficient solid-state lighting and is becoming increasingly important in high-power and high-frequency electronics. Reducing the dislocation density of gallium nitride planar layers is important for improving the performance and reliability of devices, such as light-emitting diodes and high-electron-mobility transistors. The patterning of selective growth masks is one technique for forcing a three-dimensional growth mode in order to control the propagation of threading defects to the active device layers. The morphology of the three-dimensional growth front is determined by the relative growth rates of the different facets that are formed, and for GaN is typically limited by the slow-growing {1 −1 0 1} facets. We demonstrate how the introduction of nanodash growth windows can be oriented in an array to preserve fast-growing {1 1 −2 2} facets at the early stage of growth to accelerate coalescence of three-dimensional structures into a continuous GaN layer. Cathodoluminescence and Electron Channelling Contrast Imaging methods, both used to measure the threading dislocation density, reveal that the dislocations are organised and form a distinctive pattern according to the underlying mask. By optimising the arrangement of nanodashes and the nanodash density, the threading dislocation density of GaN on sapphire epilayers can be reduced significantly from 109 cm−2 to 3.0 × 107 cm−2. Raman spectroscopy, used to monitor the strain in the overgrown GaN epilayers, shows that the position of the GaN E2H phonon mode peak was reduced as the dash density increases for a sample grown via pendeo-epitaxy whilst no obvious change was recorded for a sample grown via more conventional epitaxial lateral overgrowth. These results show how growth mask design can be used to circumvent limitations imposed by the growth dynamics. Moreover, they have revealed a greater understanding of the influence of the growth process on the dislocation density which will lead to higher performing electronic and optoelectronic devices as a result of the lower dislocation densities achieved

    Persistence of anticancer activity in berry extracts after simulated gastrointestinal digestion and colonic fermentation

    Get PDF
    Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants) produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0–50 µg/ml gallic acid equivalents), the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer
    corecore