42 research outputs found

    Analysis of the construction of the hightemperature gas infrared radiator with the use of virtual prototyping

    Get PDF
    Method of virtual prototyping with the following mathematical modeling was used to simulate the heat-mass exchange and combustion during the operation of high-temperature gas infrared radiators, and to find optimal technical solutions for its design. The most authoritative and approved software product Ansys Multiphysics was used. The results of the mathematical modeling of heat and mass transfer in a turbulent reaction medium with combustion reproduce the experimental data produced by a measurement in real operating conditions of the gas-fired infrared heat emitter. The temperature distribution along the height of the ceramic nozzle was established. Obtained results enable estimation of the ignition and combustion zones

    Combating subclonal evolution of resistant cancer phenotypes

    Get PDF
    Metastatic breast cancer remains challenging to treat, and most patients ultimately progress on therapy. This acquired drug resistance is largely due to drug-refractory sub-populations (subclones) within heterogeneous tumors. Here, we track the genetic and phenotypic subclonal evolution of four breast cancers through years of treatment to better understand how breast cancers become drug-resistant. Recurrently appearing post-chemotherapy mutations are rare. However, bulk and single-cell RNA sequencing reveal acquisition of malignant phenotypes after treatment, including enhanced mesenchymal and growth factor signaling, which may promote drug resistance, and decreased antigen presentation and TNF-α signaling, which may enable immune system avoidance. Some of these phenotypes pre-exist in pre-treatment subclones that become dominant after chemotherapy, indicating selection for resistance phenotypes. Post-chemotherapy cancer cells are effectively treated with drugs targeting acquired phenotypes. These findings highlight cancer's ability to evolve phenotypically and suggest a phenotype-targeted treatment strategy that adapts to cancer as it evolves

    Personality and Changes in Comorbidity Patterns Among Anxiety and Depressive Disorders

    No full text
    This prospective study examined the prognostic value of the Big Five personality model for changes in comorbidity patterns of emotional disorders both from a person- and trait-centered perspective. Moreover, it is investigated whether the predictive effect of personality can be attributed to symptom severity at baseline. We followed a cohort of 2566 persons (18-65 years) recruited in primary and specialized mental health care during two years. Personality dimensions at baseline were assessed with the NEO-FFI. The Diagnostic and Statistical Manual of Mental Disorders (4th ed.)-based diagnostic interviews with the CIDI allowed assessment of changes in comorbidity patterns of anxiety and depressive disorders over two years. Data were analyzed with latent class analysis (LCA) and latent transition analysis (LTA). LCA identified a four-class latent comorbidity class solution (Few Disorders, Fear Disorders, Distress Disorders, and Comorbid Fear and Distress Disorders) and a five-class latent personality class solution (High Resilients, Medium Resilients, Low Overcontrollers, Medium Overcontrollers, and High Over-controllers). LTA showed that the likelihood of remaining in the same latent class was larger than that of transitioning to a less severe comorbidity class. Also, after correcting for symptom severity, medium and high Overcontrollers as well as participants with lower levels of conscientiousness were less likely to transition to a less severe comorbidity class. In particular, the individual trait of conscientiousness may be less dependent on current levels of anxiety and depressive symptoms and be a key pathoplastic or even predisposing variable in anxiety and depression and needs more theoretical and empirical study

    Comment on "Low-Area Ratio, Thrust-Augmenting Ejectors"

    No full text
    corecore