5,735 research outputs found

    On the secondary instability of Taylor-Goertler vortices to Tollmien-Schlichting waves in fully-developed flows

    Get PDF
    There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmein-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poisseulle flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies

    Crossflow effects on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer

    Get PDF
    The effects of crossflow on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer with pressure gradient are studied. Attention is focused on the inviscid mode trapped in the temperature adjustment layer; this mode has greater growth rate than any other mode. The eigenvalue problem which governs the relationship between the growth rate, the crossflow amplitude, and the wavenumber is solved numerically, and the results are then used to clarify the effects of crossflow on the growth rate of inviscid Goertler vortices. It is shown that crossflow effects on Goertler vortices are fundamentally different for incompressible and hypersonic flows. The neutral mode eigenvalue problem is found to have an exact solution, and as a by-product, we have also found the exact solution to a neutral mode eigenvalue problem which was formulated, but unsolved before, by Bassom and Hall (1991)

    On the instability of hypersonic flow past a wedge

    Get PDF
    The instability of a compressible flow past a wedge is investigated in the hypersonic limit. Particular attention is given to the Tollmien-Schlichting waves governed by triple-deck theory though some discussion of inviscid modes is given. It is shown that the attached shock has a significant effect on the growth rates of Tollmien-Schlichting waves. Moreover, the presence of the shock allows for more than one unstable Tollmien-Schlichting wave. Indeed, an infinite discrete spectrum of unstable waves is induced by the shock, but these modes are unstable over relatively small but high frequency ranges. The shock is shown to have little effect on the inviscid modes considered by previous authors and an asymptotic description of inviscid modes in the hypersonic limit is given

    On the onset of three-dimensionality and time-dependence in the Goertler vortex problem

    Get PDF
    The instability of large amplitude Goertler vortices in a growing boundary layer is discussed in the fully nonlinear regime. It is shown that a three-dimensional breakdown to a flow with wavy vortex boundaries similar to that which occurs in the Taylor vortex problem takes place. However, the instability is confined to the thin shear layers which have been shown to trap the region of vortex activity. The disturbance eigenfunctions decay exponentially away from the center of these layers so that the upper and lower shear layers can support independent modes of instability. The structure of the instability, in particular its location and speed of downstream propagation, is found to be entirely consistent with recent experimental results. Furthermore, it is shown that the upper and lower layers support wavy vortex instabilities with quite different frequencies. This result is again consistent with the available experimental observations

    On a class of unsteady three-dimensional Navier Stokes solutions relevant to rotating disc flows: Threshold amplitudes and finite time singularities

    Get PDF
    A class of exact steady and unsteady solutions of the Navier Stokes equations in cylindrical polar coordinates is given. The flows correspond to the motion induced by an infinite disc rotating with constant angular velocity about the z-axis in a fluid occupying a semi-infinite region which, at large distances from the disc, has velocity field proportional to (x,-y,O) with respect to a Cartesian coordinate system. It is shown that when the rate of rotation is large, Karman's exact solution for a disc rotating in an otherwise motionless fluid is recovered. In the limit of zero rotation rate a particular form of Howarth's exact solution for three-dimensional stagnation point flow is obtained. The unsteady form of the partial differential system describing this class of flow may be generalized to time-periodic equilibrium flows. In addition the unsteady equations are shown to describe a strongly nonlinear instability of Karman's rotating disc flow. It is shown that sufficiently large perturbations lead to a finite time breakdown of that flow whilst smaller disturbances decay to zero. If the stagnation point flow at infinity is sufficiently strong, the steady basic states become linearly unstable. In fact there is then a continuous spectrum of unstable eigenvalues of the stability equations but, if the initial value problem is considered, it is found that, at large values of time, the continuous spectrum leads to a velocity field growing exponentially in time with an amplitude decaying algebraically in time

    Vortex instabilities in 3D boundary layers: The relationship between Goertler and crossflow vortices

    Get PDF
    The inviscid and viscous stability problems are addressed for a boundary layer which can support both Goertler and crossflow vortices. The change in structure of Goertler vortices is found when the parameter representing the degree of three-dimensionality of the basic boundary layer flow under consideration is increased. It is shown that crossflow vortices emerge naturally as this parameter is increased and ultimately become the only possible vortex instability of the flow. It is shown conclusively that at sufficiently large values of the crossflow there are no unstable Goertler vortices present in a boundary layer which, in the zero crossflow case, is centrifugally unstable. The results suggest that in many practical applications Goertler vortices cannot be a cause of transition because they are destroyed by the 3-D nature of the basic state. In swept wing flows the Goertler mechanism is probably not present for typical angles of sweep of about 20 degrees. Some discussion of the receptivity problem for vortex instabilities in weakly 3-D boundary layers is given; it is shown that inviscid modes have a coupling coefficient marginally smaller than those of the fastest growing viscous modes discussed recently by Denier, Hall, and Seddougui (1990). However the fact that the growth rates of the inviscid modes are the largest in most situations means that they are probably the most likely source of transition

    Nonaxisymmetric viscous lower branch modes in axisymmetric supersonic flows

    Get PDF
    In a previous paper, the weakly nonlinear interaction of a pair of axisymmetric lower branch Tollmien-Schlichting instabilities in cylindrical supersonic flows was considered. Here the possibility that nonaxisymmetric modes might also exist is investigated. In fact, it is found that such modes do exist and, on the basis of linear theory, it appears that these modes are the most important. The nonaxisymmetric modes are found to exist for flows around cylinders with nondimensional radius alpha less than some critical value alpha sub c. This critical value alpha sub c is found to increase monotonically with the azimuthal wavenumber nu of the disturbance and it is found that unstable modes always occur in pairs. It is also shown that, in general, instability in the form of lower branch Tollmien-Schlichting waves will occur first for nonaxisymmetric modes and that in the unstable regime the largest growth rates correspond to the latter modes

    On the nonlinear interfacial instability of rotating core-annular flow

    Get PDF
    The interfacial stability of rotating core-annular flows is investigated. The linear and nonlinear effects are considered for the case when the annular region is very thin. Both asymptotic and numerical methods are used to solve the flow in the core and film regions which are coupled by a difference in viscosity and density. The long-term behavior of the fluid-fluid interface is determined by deriving its nonlinear evolution in the form of a modified Kuramoto-Sivashinsky equation. We obtain a generalization of this equation to three dimensions. The flows considered are applicable to a wide array of physical problems where liquid films are used to lubricate higher or lower viscosity core fluids, for which a concentric arrangement is desired. Linearized solutions show that the effects of density and viscosity stratification are crucial to the stability of the interface. Rotation generally destabilizes non-axisymmetric disturbances to the interface, whereas the centripetal forces tend to stabilize flows in which the film contains the heavier fluid. Nonlinear affects allow finite amplitude helically travelling waves to exist when the fluids have different viscosities

    The effect of wall compliance on the Goertler vortex instability

    Get PDF
    The stability of the flow of a viscous incompressible fluid over a curved compliant wall to longitudinal Goertler vortices is investigated. The compliant wall is modeled by a particularly simple equation relating the induced wall displacement to the pressure in the overlying fluid. Attention is restricted to the large Goertler number regime; this regime being appropriate to the most unstable Goertler mode. The effect of wall compliance on this most unstable mode is investigated
    corecore