5,236 research outputs found

    Quantum key distribution at telecom wavelengths with noise-free detectors

    Full text link
    The length of a secure link over which a quantum key can be distributed depends on the efficiency and dark-count rate of the detectors used at the receiver. We report on the first demonstration of quantum key distribution using transition-edge sensors with high efficiency and negligible dark-count rates. Using two methods of synchronization, a bright optical pulse scheme and an electrical signal scheme, we have successfully distributed key material at 1,550 nm over 50 km of optical fiber. We discuss how use of these detectors in a quantum key distribution system can result in dramatic increases in range and performance

    Challenge pools of hepatitis C virus genotypes 1-6 prototype strains: replication fitness and pathogenicity in chimpanzees and human liver-chimeric mouse models

    Get PDF
    Chimpanzees represent the only animal model for studies of the natural history of hepatitis C virus (HCV). To generate virus stocks of important HCV variants, we infected chimpanzees with HCV strains of genotypes 1-6 and determined the infectivity titer of acute-phase plasma pools in additional animals. The courses of first- and second-passage infections were similar, with early appearance of viremia, HCV RNA titers of >10(4.7) IU/mL, and development of acute hepatitis; the chronicity rate was 56%. The challenge pools had titers of 10(3)-10(5) chimpanzee infectious doses/mL. Human liver-chimeric mice developed high-titer infections after inoculation with the challenge viruses of genotypes 1-6. Inoculation studies with different doses of the genotype 1b pool suggested that a relatively high virus dose is required to consistently infect chimeric mice. The challenge pools represent a unique resource for studies of HCV molecular virology and for studies of pathogenesis, protective immunity, and vaccine efficacy in vivo

    Resolved Mid-Infrared Emission Around AB Aur and V892 Tau with Adaptive Optics Nulling Interferometric Observations

    Full text link
    We present the results of adaptive optics nulling interferometric observations of two Herbig Ae stars, AB Aur and V892 Tau. Our observations at 10.3 microns show resolved circumstellar emission from both sources. Further analysis of the AB Aur emission suggests that there is an inclined disk surrounding the star. The diameter of the disk is derived to be 24 to 30 AU with an inclination of 45 to 65 degrees from face-on, and a major-axis PA of 30 +/- 15 degrees (E of N). Differences in the physical characteristics between the mid-IR emission and emission at other wavelengths (near-IR and millimeter), found in previous studies, suggest a complex structure for AB Aur's circumstellar environment, which may not be explained by a disk alone. The similarity in the observed size of AB Aur's resolved emission and that of another Herbig Ae star, HD 100546, is likely coincidental, as their respective evolutionary states and spectral energy distributions suggest significantly different circumstellar environments.Comment: 11 pages, 1 figure, Accepted for publication in ApJ Letter

    Stacked star formation rate profiles of bursty galaxies exhibit 'coherent' star formation

    Get PDF
    In a recent work based on 3200 stacked Hα\alpha maps of galaxies at z1z \sim 1, Nelson et al.~find evidence for `coherent star formation': the stacked SFR profiles of galaxies above (below) the 'star formation main sequence' (MS) are above (below) that of galaxies on the MS at all radii. One might interpret this result as inconsistent with highly bursty star formation and evidence that galaxies evolve smoothly along the MS rather than crossing it many times. We analyze six simulated galaxies at z1z\sim1 from the Feedback in Realistic Environments (FIRE) project in a manner analogous to the observations to test whether the above interpretations are correct. The trends in stacked SFR profiles are qualitatively consistent with those observed. However, SFR profiles of individual galaxies are much more complex than the stacked profiles: the former can be flat or even peak at large radii because of the highly clustered nature of star formation in the simulations. Moreover, the SFR profiles of individual galaxies above (below) the MS are not systematically above (below) those of MS galaxies at all radii. We conclude that the time-averaged coherent star formation evident stacks of observed galaxies is consistent with highly bursty, clumpy star formation of individual galaxies and is not evidence that galaxies evolve smoothly along the MS.Comment: 7 pages, 4 figures, accepted for publication in ApJ

    Space Warps II. New Gravitational Lens Candidates from the CFHTLS Discovered through Citizen Science

    Get PDF
    We report the discovery of 29 promising (and 59 total) new lens candidates from the CFHT Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first Space Warps lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RingFinder on galaxy scales and ArcFinder on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the Space Warps sample and find them to be broadly similar. The image separation distribution calculated from the Space Warps sample shows that previous constraints on the average density profile of lens galaxies are robust. SpaceWarps recovers about 65% of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80% by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of Space Warps. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens finding algorithms. We make the pipeline and the training set publicly available.Comment: 23 pages, 12 figures, MNRAS accepted, minor to moderate changes in this versio

    Landau theory of bi-criticality in a random quantum rotor system

    Full text link
    We consider here a generalization of the random quantum rotor model in which each rotor is characterized by an M-component vector spin. We focus entirely on the case not considered previously, namely when the distribution of exchange interactions has non-zero mean. Inclusion of non-zero mean permits ferromagnetic and superconducting phases for M=1 and M=2, respectively. We find that quite generally, the Landau theory for this system can be recast as a zero-mean problem in the presence of a magnetic field. Naturally then, we find that a Gabay-Toulouse line exists for M>1M>1 when the distribution of exchange interactions has non-zero mean. The solution to the saddle point equations is presented in the vicinity of the bi-critical point characterized by the intersection of the ferromagnetic (M=1) or superconducting (M=2) phase with the paramagnetic and spin glass phases. All transitions are observed to be second order. At zero temperature, we find that the ferromagnetic order parameter is non-analytic in the parameter that controls the paramagnet/ferromagnet transition in the absence of disorder. Also for M=1, we find that replica symmetry breaking is present but vanishes at low temperatures. In addition, at finite temperature, we find that the qualitative features of the phase diagram, for M=1, are {\it identical} to what is observed experimentally in the random magnetic alloy LiHoxY1xF4LiHo_xY_{1-x}F_4.Comment: 20 pages, 5 figure

    I. Edward Kiev (1905-1975)

    Get PDF

    Arthur Spanier (1889–1944)

    Get PDF
    corecore