201 research outputs found

    Molecular evolution of self-incompatibility Loci in the Brassicaceae family

    Get PDF

    Very Few RNA and DNA Sequence Differences in the Human Transcriptome

    Get PDF
    RNA editing is an important cellular process by which the nucleotides in a mature RNA transcript are altered to cause them to differ from the corresponding DNA sequence. While this process yields essential transcripts in humans and other organisms, it is believed to occur at a relatively small number of loci. The rarity of RNA editing has been challenged by a recent comparison of human RNA and DNA sequence data from 27 individuals, which revealed that over 10,000 human exonic sites appear to exhibit RNA-DNA differences (RDDs). Many of these differences could not have been caused by either of the two previously known human RNA editing mechanisms—ADAR-mediated A→G substitutions or APOBEC1-mediated C→U switches—suggesting that a previously unknown mechanism of RNA editing may be active in humans. Here, we reanalyze these data and demonstrate that genomic sequences exist in these same individuals or in the human genome that match the majority of RDDs. Our results suggest that the majority of these RDD events were observed due to accurate transcription of sequences paralogous to the apparently edited gene but differing at the edited site. In light of our results it seems prudent to conclude that if indeed an unknown mechanism is causing RDD events in humans, such events occur at a much lower frequency than originally proposed

    Analysis of Germline Variants in CDH1, IGFBP3, MMP1, MMP3, STK15 and VEGF in Familial and Sporadic Renal Cell Carcinoma

    Get PDF
    BACKGROUND:The investigation of rare familial forms of kidney cancer has provided important insights into the biology of sporadic renal cell carcinoma (RCC). In particular, the identification of the von Hippel Lindau (VHL) familial cancer syndrome gene (VHL) provided the basis for the discovery that VHL is somatically inactivated in most sporadic clear cell RCC. Many cases of familial RCC do not have mutations in known RCC susceptibility genes and there is evidence that genetic modifiers may influence the risk of RCC in VHL disease patients. Hence we hypothesised that low-penetrance functional genetic variants in pathways related to the VHL protein (pVHL) function might (a) modify the phenotypic expression of VHL disease and/or (b) predispose to sporadic RCC. METHODOLOGY/PRINCIPAL FINDINGS:We tested this hypothesis for functional polymorphisms in CDH1 (rs16260), IGFBP3 (rs2854744), MMP1 (rs1799750), MMP3 (rs679620), STK15 (rs2273535) and VEGF (rs1570360). We observed that variants of MMP1 and MMP3 were significant modifiers of RCC risk (and risks of retinal angioma and cerebellar haemangioblastoma) in VHL disease patients. In addition, higher frequencies of the MMP1 rs1799750 2G allele (p = 0.017, OR 1.49, 95%CI 1.06-2.08) and the MMP1/MMP3 rs1799750/rs679620 2G/G haplotype (OR 1.45, 95%CI 1.01-2.10) were detected in sporadic RCC patients than in controls (n = 295). CONCLUSIONS/SIGNIFICANCE:These findings (a) represent the first example of genetic modifiers of RCC risk in VHL disease, (b) replicate a previous report of an association between MMP1/MMP3 variants and sporadic RCC and (c) further implicate MMP1/MMP3-related pathways in the pathogenesis of familial and sporadic RCC

    A family-based probabilistic method for capturing de novo mutations from high-throughput short-read sequencing data

    Get PDF
    Recent advances in high-throughput DNA sequencing technologies and associated statistical analyses have enabled in-depth analysis of whole-genome sequences. As this technology is applied to a growing number of individual human genomes, entire families are now being sequenced. Information contained within the pedigree of a sequenced family can be leveraged when inferring the donors' genotypes. The presence of a de novo mutation within the pedigree is indicated by a violation of Mendelian inheritance laws. Here, we present a method for probabilistically inferring genotypes across a pedigree using high-throughput sequencing data and producing the posterior probability of de novo mutation at each genomic site examined. This framework can be used to disentangle the effects of germline and somatic mutational processes and to simultaneously estimate the effect of sequencing error and the initial genetic variation in the population from which the founders of the pedigree arise. This approach is examined in detail through simulations and areas for method improvement are noted. By applying this method to data from members of a well-defined nuclear family with accurate pedigree information, the stage is set to make the most direct estimates of the human mutation rate to date

    Family-Based Bivariate Association Tests for Quantitative Traits

    Get PDF
    The availability of a large number of dense SNPs, high-throughput genotyping and computation methods promotes the application of family-based association tests. While most of the current family-based analyses focus only on individual traits, joint analyses of correlated traits can extract more information and potentially improve the statistical power. However, current TDT-based methods are low-powered. Here, we develop a method for tests of association for bivariate quantitative traits in families. In particular, we correct for population stratification by the use of an integration of principal component analysis and TDT. A score test statistic in the variance-components model is proposed. Extensive simulation studies indicate that the proposed method not only outperforms approaches limited to individual traits when pleiotropic effect is present, but also surpasses the power of two popular bivariate association tests termed FBAT-GEE and FBAT-PC, respectively, while correcting for population stratification. When applied to the GAW16 datasets, the proposed method successfully identifies at the genome-wide level the two SNPs that present pleiotropic effects to HDL and TG traits

    Recombination Hotspots and Population Structure in Plasmodium falciparum

    Get PDF
    Understanding the influences of population structure, selection, and recombination on polymorphism and linkage disequilibrium (LD) is integral to mapping genes contributing to drug resistance or virulence in Plasmodium falciparum. The parasite's short generation time, coupled with a high cross-over rate, can cause rapid LD break-down. However, observations of low genetic variation have led to suggestions of effective clonality: selfing, population admixture, and selection may preserve LD in populations. Indeed, extensive LD surrounding drug-resistant genes has been observed, indicating that recombination and selection play important roles in shaping recent parasite genome evolution. These studies, however, provide only limited information about haplotype variation at local scales. Here we describe the first (to our knowledge) chromosome-wide SNP haplotype and population recombination maps for a global collection of malaria parasites, including the 3D7 isolate, whose genome has been sequenced previously. The parasites are clustered according to continental origin, but alternative groupings were obtained using SNPs at 37 putative transporter genes that are potentially under selection. Geographic isolation and highly variable multiple infection rates are the major factors affecting haplotype structure. Variation in effective recombination rates is high, both among populations and along the chromosome, with recombination hotspots conserved among populations at chromosome ends. This study supports the feasibility of genome-wide association studies in some parasite populations

    A murine specific expansion of the Rhox cluster involved in embryonic stem cell biology is under natural selection

    Get PDF
    BACKGROUND: The rodent specific reproductive homeobox (Rhox) gene cluster on the X chromosome has been reported to contain twelve homeobox-containing genes, Rhox1-12. RESULTS: We have identified a 40 kb genomic region within the Rhox cluster that is duplicated eight times in tandem resulting in the presence of eight paralogues of Rhox2 and Rhox3 and seven paralogues of Rhox4. Transcripts have been identified for the majority of these paralogues and all but three are predicted to produce full-length proteins with functional potential. We predict that there are a total of thirty-two Rhox genes at this genomic location, making it the most gene-rich homoeobox cluster identified in any species. From the 95% sequence similarity between the eight duplicated genomic regions and the synonymous substitution rate of the Rhox2, 3 and 4 paralogues we predict that the duplications occurred after divergence of mouse and rat and represent the youngest homoeobox cluster identified to date. Molecular evolutionary analysis reveals that this cluster is an actively evolving region with Rhox2 and 4 paralogues under diversifying selection and Rhox3 evolving neutrally. The biological importance of this duplication is emphasised by the identification of an important role for Rhox2 and Rhox4 in regulating the initial stages of embryonic stem (ES) cell differentiation. CONCLUSION: The gene rich Rhox cluster provides the mouse with significant biological novelty that we predict could provide a substrate for speciation. Moreover, this unique cluster may explain species differences in ES cell derivation and maintenance between mouse, rat and human

    Antimalarial Drug Quality in the Most Severely Malarious Parts of Africa – A Six Country Study

    Get PDF
    A range of antimalarial drugs were procured from private pharmacies in urban and peri-urban areas in the major cities of six African countries, situated in the part of that continent and the world that is most highly endemic for malaria. Semi-quantitative thin-layer chromatography (TLC) and dissolution testing were used to measure active pharmaceutical ingredient content against internationally acceptable standards. 35% of all samples tested failed either or both tests, and were substandard. Further, 33% of treatments collected were artemisinin monotherapies, most of which (78%) were manufactured in disobservance of an appeal by the World Health Organisation (WHO) to withdraw these clinically inappropriate medicines from the market. The high persistence of substandard drugs and clinically inappropriate artemisinin monotherapies in the private sector risks patient safety and, through drug resistance, places the future of malaria treatment at risk globally
    corecore