6,119 research outputs found

    Effects of planform geometry on hover performance of a 2-meter-diameter model of a four-bladed rotor

    Get PDF
    Hover tests were conducted on three small scale rotors to evaluate the effects of blade planform taper on rotor hover performance. Tests were conducted on a rectangular swept-tip configuration, on a configuration with a 3 to 1 taper over the outboard 20 percent of the span, and on a configuration with a 5 to 1 taper over the outboard 20 percent of the blade span. The investigation covered a range of thrust coefficients from 0 to 0.0075 and a range of tip speeds from 300 to 600 ft/sec. The tests showed that both tapered configurations had better hover performance than the swept-tip rectangular configuration and that the 3 to 1 taper configuration was better than the 5 to 1 taper configuration. The test results were compared with predictions made with a prescribed wake analysis, a momentum analysis, and a simplified free wake analysis

    Upper-surface-blowing flow-turning performance

    Get PDF
    Jet exhaust flow-turning characteristics were determined for systematic variations in upper-surface blowing exhaust nozzles and trailing-edge flap configuration variables from experimental wind-off (static) flow studies. For conditions with parallel flow exhausting from the nozzle, jet height (as indicated by nozzle exit height) and flap radius were found to be the most important parameters relating to flow turning. Nonparallel flow from the nozzle, as obtained from an internal roof angle and/or side spread angle, had a large favorable effect on flow turning. Comparisons made between static turning results and wind tunnel aerodynamic studies of identical configurations indicated that static flow-turning results can be indicative of wind-on powered lift performance for both good and poor nozzle-flap combinations but, for marginal designs, can lead to overly optimistic assessment of powered lift potential

    Helicopter Anti-Torque System Using Strakes

    Get PDF
    A helicopter is disclosed with a system for controlling main-rotor torque which reduces the power and size requirements of conventional anti-torque means. The torque countering forces are generated by disrupting the main rotor downwash flowing around the fuselage. The downwash flow is separated from the fuselage surface by a strake positioned at a specified location on the fuselage. This location is determined by the particular helicopter wash pattern and fuselage configuration, generally being located between 20 deg before top dead center (TDC) and 80 deg from TDC on the fuselage side to which the main rotor blade approaches during rotation. The strake extends along the fuselage from the cabin section to the aft end and can be continuous or separated for aerodynamic surfaces such as a horizontal stabilizer

    Growth-Quality Evaluation of Black Walnut Wood. Part III-An Anatomical Study of Color Characteristics of Black Walnut Veneer

    Get PDF
    Because wood color is an important quality characteristic in black walnut (Juglans nigra L.), a study was devised to examine some cellular features of heartwood coloration using microspectrophotometric techniques. Five commercially prepared veneer samples exhibiting low macro-luminance (darker) and five exhibiting high macro-luminance (lighter) were chosen for microscopic color analysis. Statistically significant differences were found between the high and low macro-luminance sample groups in the micro-luminance color value in some cellular features (axial parenchyma walls, ray parenchyma walls, fiber walls, and ray parenchyma inclusions). Also observed were large differences in the dominant wavelength of ray parenchyma inclusions between the sample groups. These results suggest that quality of these coloration pigments (phenolics) is more important than quantity for overall color variations

    Tunable Transient Decay Times in Nonlinear Systems: Application to Magnetic Precession

    Full text link
    The dynamical motion of the magnetization plays a key role in the properties of magnetic materials. If the magnetization is initially away from the equilibrium direction in a magnetic nanoparticle, it will precess at a natural frequency and, with some damping present, will decay to the equilibrium position in a short lifetime. Here we investigate a simple but important situation where a magnetic nanoparticle is driven non-resonantly by an oscillating magnetic field, not at the natural frequency. We find a surprising result that the lifetime of the transient motion is strongly tunable, by factors of over 10,000, by varying the amplitude of the driving field.Comment: EPL Preprin

    Free-flight investigation of the stability and control characteristics of a STOL model with an externally blown jet flap

    Get PDF
    The stability and control characteristics of a four-engine turbofan STOL transport model having an externally blown jet flap have been investigated by means of the flying-model technique in the Langley full-scale tunnel. The flight characteristics of the model were investigated under conditions of symmetric and asymmetric (one engine inoperative) thrust at lift coefficients up to 9.5 and 5.5, respectively. Static characteristics were studied by conventional power-on force tests over the flight-test angle-of-attack range including the stall. In addition to these tests, dynamic longitudinal and lateral stability calculations were performed for comparison with the flight-test results and for use in correlating the model results with STOL handling-qualities criteria

    Static and wind-on tests of an upper-surface-blown jet-flap nozzle arrangement for use on the Quiet Clean Short-haul Experimental Engine (QCSEE)

    Get PDF
    The internal aerodynamic performance, the static turning characteristics, and the forward-speed characteristics of two 1/12-scale upper surface-blown jet-flap exhaust-nozzle arrangements designed for use on the Quiet Clean Short-Haul Experimental Engine (QCSEE) were investigated. The nozzles were equipped with interchangeable area-control side doors in the aft sidewalls of the nozzle so that the effective nozzle area could be varied over a wide range. A simulated wing was used to evaluate installation losses for the nozzles. A smoothly curved flap was attached to the trailing edge of the simulated wing to allow an evaluation of the static turning characteristics of the nozzle arrangement. Forward-speed effects on the jet turning characteristics of the QCSEE nozzles were evaluated by mounting a single engine on a semispan wing designed to be representative of a four-engine STOL transport configuration

    Wind tunnel investigation of a twin engine straight wing upper surface blown jet flap configuration

    Get PDF
    An investigation was conducted in a full scale wind tunnel to determine the performance and aerodynamic characteristics of a twin engine, straight wing, upper surface blown jet flap configuration. The model had two simulated high bypass ratio turbofan engines with rectangular nozzles exhausting onto the upper surface of the wing at the 35 percent chord station. The model was tested with an aspect ratio 8.2 wing and with the wingtips removed to give an aspect ratio of 6.0

    Aerodynamic characteristics of a counter-rotating, coaxial, hingeless rotor helicopter model with auxiliary propulsion

    Get PDF
    A wind-tunnel model test at advance ratios from 0 to 0.3 with and without auxiliary jet engine thrust is reported. At each advance ratio and engine thrust, both the control power and the aircraft stability were measured. The results indicate that there is a cross-coupling for collective pitch and longitudinal cyclic pitch inputs. The control power for these inputs increased with advance ratio. There was also cross-coupling for differential collective pitch inputs. The airframe was longitudinally unstable, but the instability was less at the highest advance ratio tested. The airframe showed both positive effective dihedral and positive directional stability

    In vivo imaging of pyrrole-imidazole polyamides with positron emission tomography

    Get PDF
    The biodistribution profiles in mice of two pyrrole-imidazole polyamides were determined by PET. Pyrrole-imidazole polyamides are a class of small molecules that can be programmed to bind a broad repertoire of DNA sequences, disrupt transcription factor-DNA interfaces, and modulate gene expression pathways in cell culture experiments. The 18F-radiolabeled polyamides were prepared by oxime ligation between 4-[18F]-fluorobenzaldehyde and a hydroxylamine moiety at the polyamide C terminus. Small animal PET imaging of radiolabeled polyamides administered to mice revealed distinct differences in the biodistribution of a 5-ring β-linked polyamide versus an 8-ring hairpin, which exhibited better overall bioavailability. In vivo imaging of pyrrole-imidazole polyamides by PET is a minimum first step toward the translation of polyamide-based gene regulation from cell culture to small animal studies
    corecore