46 research outputs found

    Associations Between Mothers’ Use of Food to Soothe, Feeding Mode, and Infant Weight During Early Infancy

    Get PDF
    Weight status and rate of weight gain in the first six months postpartum are strong predictors of later obesity; thus, infant feeding practices are an important target for obesity prevention efforts. The use of food to soothe (FTS) is associated with less-favorable eating habits and weight outcomes for older infants and children. However, few studies have examined correlates of use of FTS during early infancy. The primary aim of this cross-sectional study was to explore associations between use of FTS and infant weight status in the first 6 months postpartum. A secondary aim was to identify the combination of maternal and infant characteristics that predicted use of FTS. Mothers of infants aged 6 months or younger (N = 134) completed questionnaires assessing use of FTS, bottle-feeding intensity (i.e., percentage of daily feedings from bottles versus directly from the breast), levels of responsive and pressuring feeding styles, dimensions of infant temperament and eating behaviors, and family demographics. Dyads were observed during feeding to assess maternal sensitivity to infant cues and responsiveness to infant distress and infant clarity of cues and responsiveness to the mother. Infant weight and length at study entry were assessed by a trained research assistant. Use of FTS was not associated with infant weight for age z-score (WAZ), even when bottle-feeding intensity was considered as a moderator. More frequent use of FTS was predicted by the combination of greater levels of pressuring feeding style (p = .005) and infant temperamental negative affectivity (p = .001), and lower levels of infant temperamental surgency/extraversion (p = .018). In conclusion, use of FTS was associated with dimensions of infant temperament and maternal feeding style, but not with WAZ during early infancy

    Solar power windows: Connecting scientific advances to market signals

    Get PDF
    Recent materials advances have enabled researchers to envision and develop highly efficient, partially transparent photovoltaic (PV) prototypes, exposing a potentially large and untapped market for solar energy: building integrated (BI) solar powered windows. In this perspective, we assess the case for market deployment of BIPV windows, specifically intended for commercial U.S. high-rise buildings. Research and development on solar powered windows has been predicated on the hypothesis that sunlight-to-electrical power conversion efficiency (PCE) and device cost per unit area are the key figures of merit that might drive market adoption. Here we investigate the market landscape and desirability for solar powered windows by identifying and evaluating the customer needs for the commercial high-rise building window market. In the course of this assessment, we performed 150 interviews with experts across the value chain for commercial windows. We found that the market forces are complicated by a misalignment of incentives between the end users of BIPV windows and the key decision makers for building projects that could incorporate this technology. Our assessment leads us to frame new figures of merit for BIPV windows that address the underlying needs of prospective customers as well as technical metrics for energy generation. We finally discuss one possible direction for BIPV window technology in which photovoltaics are integrated with switchable windows. Here, the integrated PV converts visible and infrared light transmission into useable electricity enabling standalone, self-powered active windows that can potentially address market needs for smart windows, thereby enabling a pathway for BIPV window deployment

    Autonomous Light Management in Flexible Photoelectrochromic Films Integrating High Performance Silicon Solar Microcells

    Get PDF
    Commercial smart window technologies for dynamic light and heat management in building and automotive environments traditionally rely on electrochromic (EC) materials powered by an external source. This design complicates building-scale installation requirements and substantially increases costs for applications in retrofit construction. Self-powered photoelectrochromic (PEC) windows are an intuitive alternative wherein a photovoltaic (PV) material is used to power the electrochromic device, which modulates the transmission of the incident solar flux. The PV component in this application must be sufficiently transparent and produce enough power to efficiently modulate the EC device transmission. Here, we propose Si solar microcells (μ-cells) that are i) small enough to be visually transparent to the eye, and ii) thin enough to enable flexible PEC devices. Visual transparency is achieved when Si μ-cells are arranged in high pitch (i.e. low-integration density) form factors while maintaining the advantages of a single-crystalline PV material (i.e., long lifetime and high performance). Additionally, the thin dimensions of these Si μ-cells enable fabrication on flexible substrates to realize these flexible PEC devices. The current work demonstrates this concept using WO₃ as the EC material and V₂O₅ as the ion storage layer, where each component is fabricated via sol-gel methods that afford improved prospects for scalability and tunability in comparison to thermal evaporation methods. The EC devices display fast switching times, as low as 8 seconds, with a modulation in transmission as high as 33%. Integration with two Si μ-cells in series (affording a 1.12 V output) demonstrates an integrated PEC module design with switching times of less than 3 minutes, and a modulation in transmission of 32% with an unprecedented EC:PV areal ratio

    Individuals with Primary Sclerosing Cholangitis Have Elevated Levels of Biomarkers for Apoptosis but Not Necrosis

    Get PDF
    BACKGROUND AND AIM: Hepatocyte apoptosis or necrosis from accumulation of bile salts may play an important role in the disease progression of primary sclerosing cholangitis (PSC). The aim of the current study was to measure serum markers of hepatocyte apoptosis (cytokeratin-18 fragments--K18) and necrosis (high-mobility group protein B1--HMGB1) in adults with PSC and examine the relationship with disease severity. METHODS: We measured serum levels of K18 and HMGB1 in well-phenotyped PSC (N = 37) and 39 control subjects (N = 39). Severity of PSC was assessed biochemically, histologically, and PSC Mayo risk score. Quantification of hepatocyte apoptosis was performed using TUNEL assay. RESULTS: The mean age of the study cohort was 49.7 ± 13.3 years and comprised of 67% men and 93% Caucasian. Serum K18 levels were significantly higher in the PSC patients compared to control (217.4 ± 78.1 vs. 157.0 ± 58.2 U/L, p = 0.001). However, HMGB1 levels were not different between the two groups (5.38 ± 2.99 vs. 6.28 ± 2.85 ng/mL, p = 0.15). Within the PSC group, K18 levels significantly correlated with AST (r = 0.5, p = 0.002), alkaline phosphatase (r = 0.5, p = 0.001), total bilirubin (r = 0.61, p ≤ 0.001), and albumin (r = -0.4, p = 0.02). Serum K18 levels also correlated with the level of apoptosis present on the liver biopsy (r = 0.8, p ≤ 0.001) and Mayo risk score (r = 0.4, p = 0.015). CONCLUSION: Serum K18 but not HMGB1 levels were increased in PSC and associated with severity of underlying liver disease and the degree of hepatocyte apoptosis

    State of the Science for Kidney Disorders in Phelan-McDermid Syndrome: UPK3A, FBLN1, WNT7B, and CELSR1 as Candidate Genes

    Get PDF
    Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder caused by chromosomal rearrangements affecting the 22q13.3 region or by SHANK3 pathogenic variants. The scientific literature suggests that up to 40% of individuals with PMS have kidney disorders, yet little research has been conducted on the renal system to assess candidate genes attributed to these disorders. Therefore, we first conducted a systematic review of the literature to identify kidney disorders in PMS and then pooled the data to create a cohort of individuals to identify candidate genes for renal disorders in PMS. We found 7 types of renal disorders reported: renal cysts, renal hypoplasia or agenesis, hydronephrosis, vesicoureteral reflux, kidney dysplasia, horseshoe kidneys, and pyelectasis. Association analysis from the pooled data from 152 individuals with PMS across 22 articles identified three genomic regions spanning chromosomal bands 22q13.31, 22q13.32, and 22q13.33, significantly associated with kidney disorders. We propose UPK3A, FBLN1, WNT7B, and CELSR1, located from 4.5 Mb to 5.5 Mb from the telomere, as candidate genes. Our findings support the hypothesis that genes included in this region may play a role in the pathogenesis of kidney disorders in PMS

    Photonic Crystal Waveguides for >90% Light Trapping Efficiency in Luminescent Solar Concentrators

    Get PDF
    Luminescent solar concentrators are currently limited in their potential concentration factor and solar conversion efficiency by the inherent escape cone losses present in conventional planar dielectric waveguides. We demonstrate that photonic crystal slab waveguides tailored for luminescent solar concentrator applications can exhibit >90% light trapping efficiency. This is achieved by use of quantum dot luminophores embedded within the waveguide that absorb light at photon energies corresponding to photonic crystal leaky modes that couple to incoming sunlight. The luminophores then emit at lower photon energies into photonic crystal bound modes that enable highly efficient light trapping in slab waveguides of wavelength-scale thickness. Photonic crystal waveguides thus nearly eliminate escape cone losses, and overcome the performance limitations of previously proposed wavelength-selective dielectric multilayer filters. We describe designs for hole-array and rod-array photonic crystals comprised of hydrogenated amorphous silicon carbide using CdSe/CdS quantum dots. Our analysis suggests that photonic crystal waveguide luminescent solar concentrators using these materials these can achieve light trapping efficiency above 92% and a concentration factor as high as 100

    Dataset for Pilot Randomized Trial to Reduce Urinary Bisphenols in Women With Obesity

    Get PDF
    Background: Bisphenol exposure is widespread and correlated with diabetes and cardiovascular disease. Previous intervention studies have effectively lowered bisphenol exposure among women of normal-weight. The purpose of this pilot study was to test the hypothesis that a 3-week bisphenol intervention would decrease urinary bisphenol A (BPA) bisphenol S (BPS), and bisphenol F (BPF) in women with obesity. Methods: Thirty women with obesity (31.1 ± 5.6 kg/m2, 21.1 ± 3.1 yrs) were randomly assigned to an intervention or control. The intervention included weekly face-to-face meetings to reduce bisphenol exposures from food, cosmetics, and packaged products. Fasting urinary bisphenols, creatinine, and weight were assessed at study entry and after 3-weeks. Results: From study entry to 3-weeks, there was a significant treatment x time (P0.05) effects on creatinine-corrected urinary BPA, BPF, and weight. Conclusion: In women with obesity, a 3-week intervention decreased urinary BPS concentrations. Future large-scale clinical trials are needed to confirm these result and determine whether intervention reductions in bisphenols positively impact diabetes and cardiovascular disease risk markers

    Autonomous Light Management in Flexible Photoelectrochromic Films Integrating High Performance Silicon Solar Microcells

    Get PDF
    Commercial smart window technologies for dynamic light and heat management in building and automotive environments traditionally rely on electrochromic (EC) materials powered by an external source. This design complicates building-scale installation requirements and substantially increases costs for applications in retrofit construction. Self-powered photoelectrochromic (PEC) windows are an intuitive alternative wherein a photovoltaic (PV) material is used to power the electrochromic device, which modulates the transmission of the incident solar flux. The PV component in this application must be sufficiently transparent and produce enough power to efficiently modulate the EC device transmission. Here, we propose Si solar microcells (μ-cells) that are i) small enough to be visually transparent to the eye, and ii) thin enough to enable flexible PEC devices. Visual transparency is achieved when Si μ-cells are arranged in high pitch (i.e. low-integration density) form factors while maintaining the advantages of a single-crystalline PV material (i.e., long lifetime and high performance). Additionally, the thin dimensions of these Si μ-cells enable fabrication on flexible substrates to realize these flexible PEC devices. The current work demonstrates this concept using WO₃ as the EC material and V₂O₅ as the ion storage layer, where each component is fabricated via sol-gel methods that afford improved prospects for scalability and tunability in comparison to thermal evaporation methods. The EC devices display fast switching times, as low as 8 seconds, with a modulation in transmission as high as 33%. Integration with two Si μ-cells in series (affording a 1.12 V output) demonstrates an integrated PEC module design with switching times of less than 3 minutes, and a modulation in transmission of 32% with an unprecedented EC:PV areal ratio
    corecore