2,732 research outputs found

    Quantum oscillations and a non-trivial Berry phase in the noncentrosymmetric superconductor BiPd

    Get PDF
    We report the measurements of de Haas-van Alphen (dHvA) oscillations in the noncentrosymmetric superconductor BiPd. Several pieces of a complex multi-sheet Fermi surface are identified, including a small pocket (frequency 40 T) which is three dimensional and anisotropic. From the temperature dependence of the amplitude of the oscillations, the cyclotron effective mass is (0.180.18 ±\pm 0.1) mem_e. Further analysis showed a non-trivial π\pi-Berry phase is associated with the 40 T pocket, which strongly supports the presence of topological states in bulk BiPd and may result in topological superconductivity due to the proximity coupling to other bands.Comment: 5 pages, 3 figure

    Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2_2 using multiphoton microscopy

    Full text link
    We report second- and third-harmonic generation in monolayer MoS2_\mathrm{2} as a tool for imaging and accurately characterizing the material's nonlinear optical properties under 1560 nm excitation. Using a surface nonlinear optics treatment, we derive expressions relating experimental measurements to second- and third-order nonlinear sheet susceptibility magnitudes, obtaining values of χs(2)=2.0×1020|\chi_s^{(2)}|=2.0\times10^{-20} m2^2 V1^{-1} and for the first time for monolayer MoS2_\mathrm{2}, χs(3)=1.7×1028|\chi_s^{(3)}|=1.7\times10^{-28} m3^3 V2^{-2}. These sheet susceptibilities correspond to effective bulk nonlinear susceptibility values of χb(2)=2.9×1011|\chi_{b}^{(2)}|=2.9\times10^{-11} m V1^{-1} and χb(3)=2.4×1019|\chi_{b}^{(3)}|=2.4\times10^{-19} m2^2 V2^{-2}, accounting for the sheet thickness. Experimental comparisons between MoS2_\mathrm{2} and graphene are also performed, demonstrating \sim3.4 times stronger third-order sheet nonlinearity in monolayer MoS2_\mathrm{2}, highlighting the material's potential for nonlinear photonics in the telecommunications C band.Comment: Accepted by 2D Materials, 28th Oct 201

    Self-Pulsating Semiconductor Lasers: Theory and Experiment

    Get PDF
    We report detailed measurements of the pump-current dependency of the self-pulsating frequency of semiconductor CD lasers. A distinct kink in this dependence is found and explained using rate-equation model. The kink denotes a transition between a region where the self-pulsations are weakly sustained relaxation oscillations and a region where Q-switching takes place. Simulations show that spontaneous emission noise plays a crucial role for the cross-over.Comment: Revtex, 16 pages, 7 figure

    Autonomous Light Management in Flexible Photoelectrochromic Films Integrating High Performance Silicon Solar Microcells

    Get PDF
    Commercial smart window technologies for dynamic light and heat management in building and automotive environments traditionally rely on electrochromic (EC) materials powered by an external source. This design complicates building-scale installation requirements and substantially increases costs for applications in retrofit construction. Self-powered photoelectrochromic (PEC) windows are an intuitive alternative wherein a photovoltaic (PV) material is used to power the electrochromic device, which modulates the transmission of the incident solar flux. The PV component in this application must be sufficiently transparent and produce enough power to efficiently modulate the EC device transmission. Here, we propose Si solar microcells (μ-cells) that are i) small enough to be visually transparent to the eye, and ii) thin enough to enable flexible PEC devices. Visual transparency is achieved when Si μ-cells are arranged in high pitch (i.e. low-integration density) form factors while maintaining the advantages of a single-crystalline PV material (i.e., long lifetime and high performance). Additionally, the thin dimensions of these Si μ-cells enable fabrication on flexible substrates to realize these flexible PEC devices. The current work demonstrates this concept using WO₃ as the EC material and V₂O₅ as the ion storage layer, where each component is fabricated via sol-gel methods that afford improved prospects for scalability and tunability in comparison to thermal evaporation methods. The EC devices display fast switching times, as low as 8 seconds, with a modulation in transmission as high as 33%. Integration with two Si μ-cells in series (affording a 1.12 V output) demonstrates an integrated PEC module design with switching times of less than 3 minutes, and a modulation in transmission of 32% with an unprecedented EC:PV areal ratio

    Electrical conductivity of dispersions: from dry foams to dilute suspensions

    Full text link
    We present new data for the electrical conductivity of foams in which the liquid fraction ranges from two to eighty percent. We compare with a comprehensive collection of prior data, and we model all results with simple empirical formul\ae. We achieve a unified description that applies equally to dry foams and emulsions, where the droplets are highly compressed, as well as to dilute suspensions of spherical particles, where the particle separation is large. In the former limit, Lemlich's result is recovered; in the latter limit, Maxwell's result is recovered

    Modelling lubricated revolute joints in multibody mechanical systems

    Get PDF
    This work deals with the modelling of lubricated revolute joints in multibody mechanical systems. In most machines and mechanisms, the joints are designed to operate with some lubricant fluid. The high pressures generated in the lubricant fluid act to keep the journal and the bearing apart. Moreover, the thin film formed by lubricant reduces friction and wear, provides load capacity and adds damping to dissipate undesirable mechanical vibrations. In the dynamic analysis of journal–bearings, the hydrodynamic forces, which include both squeeze and wedge effects, produced by the lubricant fluid oppose the journal motion. These forces are obtained by integrating the pressure distribution evaluated with the aid of Reynolds’ equation written for the dynamic regime. The hydrodynamic forces are nonlinear functions of journal centre position and velocity relative to the bearing centre. In a simple way, the hydrodynamic forces built up by the lubricant fluid are evaluated from the state of variable of the system and included into the equations of motion of the mechanical system. Results for an elementary slider–crank mechanism, in which a lubricated revolute joint connects the connecting rod and slider, are used to discuss the assumptions and procedures adopted.Fundação para a Ciência e a Tecnologia (FCT

    Vapor Generation in a Nanoparticle Liquid Suspension Using a Focused, Continuous Laser

    Get PDF
    This letter discusses experimentation with optically induced phase change in nanoparticle liquid suspensions-commonly termed nanofluids. Four different types of nanofluids at five concentrations were exposed to a similar to 120 mW, 532 nm laser beam to determine the minimum laser flux needed to create vapor. Laser irradiance was varied between 0-770 W cm(-2). While the experiments were simple, they involved many complex, interrelated physical phenomena, including: subcooled boiling, thermal driven particle/bubble motion, nanoparticle radiative absorption/scattering, and nanoparticle clumping. Such phenomena could enable novel solar collectors in which the working fluid directly absorbs energy and undergoes phase change in a single step. c 2009 American Institute of Physics. [doi: 10.1063/1.3250174

    Neutron scattering Measurements of the phonon density of states of FeSe1x_{1-x} superconductors

    Full text link
    Inelastic neutron-scattering experiments have been carried out on polycrystalline samples of the FeSe1x_{1-x} superconductors. We report the phonon density of states for FeSe1x_{1-x} with Tc\approx8 K. The phonon cutoff frequency is observed around 40 meV. No significant change is observed across the superconducting transition. The measurements support the published first-principles calculations [A. Subedi et al., Phys. Rev. B \textbf{78}, 134514 (2008)].Comment: new version with change
    corecore