37 research outputs found

    Matched ligands for small, stable colloidal nanoparticles of copper, cuprous oxide and cuprous sulfide

    Get PDF
    This work applies organometallic routes to copper(0/I) nanoparticles and describes how to match ligand chemistries with different material compositions. The syntheses involve reacting an organo-copper precursor, mesitylcopper(I) [CuMes]z (z=4, 5), at low temperatures and in organic solvents, with hydrogen, air or hydrogen sulfide to deliver Cu, Cu2 O or Cu2 S nanoparticles. Use of sub-stoichiometric quantities of protonated ligand (pro-ligand; 0.1-0.2 equivalents vs. [CuMes]z ) allows saturation of surface coordination sites but avoids excess pro-ligand contaminating the nanoparticle solutions. The pro-ligands are nonanoic acid (HO2 CR1 ), 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (HO2 CR2 ) or di(thio)nonanoic acid, (HS2 CR1 ), and are matched to the metallic, oxide or sulfide nanoparticles. Ligand exchange reactions reveal that copper(0) nanoparticles may be coordinated by carboxylate or di(thio)carboxylate ligands, but Cu2 O is preferentially coordinated by carboxylate ligands and Cu2 S by di(thio)carboxylate ligands. This work highlights the opportunities for organometallic routes to well-defined nanoparticles and the need for appropriate ligand selection

    Matched Ligands for Small, Stable Colloidal Nanoparticles of Copper, Cuprous Oxide and Cuprous Sulfide

    Get PDF
    This work applies organometallic routes to copper(0/I) nanoparticles and describes how to match ligand chemistries with different material compositions. The syntheses involve reacting an organo-copper precursor, mesitylcopper(I) [CuMes]z (z=4, 5), at low temperatures and in organic solvents, with hydrogen, air or hydrogen sulfide to deliver Cu, Cu2O or Cu2S nanoparticles. Use of sub-stoichiometric quantities of protonated ligand (pro-ligand; 0.1–0.2 equivalents vs. [CuMes]z) allows saturation of surface coordination sites but avoids excess pro-ligand contaminating the nanoparticle solutions. The pro-ligands are nonanoic acid (HO2CR1), 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (HO2CR2) or di(thio)nonanoic acid, (HS2CR1), and are matched to the metallic, oxide or sulfide nanoparticles. Ligand exchange reactions reveal that copper(0) nanoparticles may be coordinated by carboxylate or di(thio)carboxylate ligands, but Cu2O is preferentially coordinated by carboxylate ligands and Cu2S by di(thio)carboxylate ligands. This work highlights the opportunities for organometallic routes to well-defined nanoparticles and the need for appropriate ligand selection

    Insights into the mechanism of carbon dioxide and propylene oxide ring-opening copolymerization using a Co(III)/K(I) heterodinuclear catalyst

    Get PDF
    A combined computational and experimental investigation into the catalytic cycle of carbon dioxide and propylene oxide ring-opening copolymerization is presented using a Co(III)K(I) heterodinuclear complex (Deacy, A. C. Co(III)/Alkali-Metal(I) Heterodinuclear Catalysts for the Ring-Opening Copolymerization of CO2 and Propylene Oxide. J. Am. Chem. Soc. 2020, 142(45), 19150−19160). The complex is a rare example of a dinuclear catalyst, which is active for the copolymerization of CO2 and propylene oxide, a large-scale commercial product. Understanding the mechanisms for both product and byproduct formation is essential for rational catalyst improvements, but there are very few other mechanistic studies using these monomers. The investigation suggests that cobalt serves both to activate propylene oxide and to stabilize the catalytic intermediates, while potassium provides a transient carbonate nucleophile that ring-opens the activated propylene oxide. Density functional theory (DFT) calculations indicate that reverse roles for the metals have inaccessibly high energy barriers and are unlikely to occur under experimental conditions. The rate-determining step is calculated as the ring opening of the propylene oxide (ΔGcalc† = +22.2 kcal mol–1); consistent with experimental measurements (ΔGexp† = +22.1 kcal mol–1, 50 °C). The calculated barrier to the selectivity limiting step, i.e., backbiting from the alkoxide intermediate to form propylene carbonate (ΔGcalc† = +21.4 kcal mol–1), is competitive with the barrier to epoxide ring opening (ΔGcalc† = +22.2 kcal mol–1) implicating an equilibrium between alkoxide and carbonate intermediates. This idea is tested experimentally and is controlled by carbon dioxide pressure or temperature to moderate selectivity. The catalytic mechanism, supported by theoretical and experimental investigations, should help to guide future catalyst design and optimization

    Reversible dihydrogen activation and catalytic H/D exchange with group 10 heterometallic complexes

    Get PDF
    Reaction of a hexagonal planar palladium complex featuring a [PdMg3H3] core with H2 is reversible and leads to the formation of a new [PdMg2H4] tetrahydride species alongside an equivalent of a magnesium hydride co-product [MgH]. While the reversibility of this process prevented isolation of [PdMg2H4], analogous [PtMg2H4] and [PtZn2H4] complexes could be isolated and characterised through independent syntheses. Computational analysis (DFT, AIM, NCIPlot) of the bonding in a series of heterometallic tetrahydride compounds (Ni–Pt; Mg and Zn) suggests that these complexes are best described as square planar with marginal metal-metal interactions; the strength of which increases slightly as group 10 is descended and increases from Mg to Zn. DFT calculations support a mechanism for H2 activation involving a ligand-assisted oxidative addition to Pd. These findings were exploited to develop a catalytic protocol for H/D exchange into magnesium hydride and zinc hydride bonds

    Correlating metal redox potentials to Co(III)K(I) catalyst performances in carbon dioxide and propene oxide ring opening copolymerization

    Get PDF
    Carbon dioxide copolymerization is a front-runner CO2 utilization strategy but its viability depends on improving the catalysis. So far, catalyst structure-performance correlations have not been straightforward, limiting the ability to predict how to improve both catalytic activity and selectivity. Here, a simple measure of a catalyst ground-state parameter, metal reduction potential, directly correlates with both polymerization activity and selectivity. It is applied to compare performances of 6 new heterodinuclear Co(III)K(I) catalysts for propene oxide (PO)/CO2 ring opening copolymerization (ROCOP) producing poly(propene carbonate) (PPC). The best catalyst shows an excellent turnover frequency of 389 h−1 and high PPC selectivity of >99 % (50 °C, 20 bar, 0.025 mol% catalyst). As demonstration of its utility, neither DFT calculations nor ligand Hammett parameter analyses are viable predictors. It is proposed that the cobalt redox potential informs upon the active site electron density with a more electron rich cobalt centre showing better performances. The method may be widely applicable and is recommended to guide future catalyst discovery for other (co)polymerizations and carbon dioxide utilizations

    Probing Unexpected Reactivity in Radiometal Chemistry: Indium-111-Mediated Hydrolysis of Hybrid Cyclen-Hydroxypyridinone Ligands

    Get PDF
    Chelators based on hydroxypyridinones have utility in incorporating radioactive metal ions into diagnostic and therapeutic agents used in nuclear medicine. Over the course of our hydroxypyridinone studies, we have prepared two novel chelators, consisting of a cyclen (1,4,7,10-tetraazacyclododecane) ring bearing two pendant hydroxypyridinone groups, appended via methylene acetamide motifs at either the 1,4-positions (L1) or 1,7-positions (L2) of the cyclen ring. In radiolabeling reactions of L1 or L2 with the γ-emitting radioisotope, [111In]In3+, we have observed radiometal-mediated hydrolysis of a single amide group of either L1 or L2. The reaction of either [111In]In3+ or [natIn]In3+ with either L1 or L2, in aqueous alkaline solutions at 80 °C, initially results in formation of [In(L1)]+ or [In(L2)]+, respectively. Over time, each of these species undergoes In3+-mediated hydrolysis of a single amide group to yield species in which In3+ remains coordinated to the resultant chelator, which consists of a cyclen ring bearing a single hydroxypyridinone group and a single carboxylate group. The reactivity toward hydrolysis is higher for the L1 complex compared to that for the L2 complex. Density functional theory calculations corroborate these experimental findings and importantly indicate that the activation energy required for the hydrolysis of L1 is significantly lower than that required for L2. This is the first reported example of a chelator undergoing radiometal-mediated hydrolysis to form a radiometalated complex. It is possible that metal-mediated amide bond cleavage is a source of instability in other radiotracers, particularly those in which radiometal complexation occurs in aqueous, basic solutions at high temperatures. This study highlights the importance of appropriate characterization of radiolabeled products

    Phosphine-alkene ligand-mediated alkyl-alkyl and alkyl-halide elimination processes from palladium(II)

    Get PDF
    N-Diphenylphosphino-7-aza-benzobicyclo[2.2.1]hept-2-ene (2) behaves as a chelating phosphine–alkene ligand for Pd0 and PdII, promoting direct alkyl–alkyl and indirect alkyl–halide reductive elimination reactions due to the stabilisation of the resulting bis(phosphine–alkene)Pd0 complex

    The Coordination Chemistry of the Phosphanylborane (C 6

    No full text

    Branched-selective hydroformylation of nonactivated olefins using an N-Triphos/Rh catalyst

    No full text
    We report a catalytic system comprised of nitrogen-centered di- or triphosphine ligands in conjunction with rhodium that is capable of delivering branched aldehydes from terminal olefin substrates which commonly give more linear aldehydes than branched. The incorporation of an apical nitrogen atom into the ligand backbone dramatically improves the reaction rate. Mechanistic and labeling studies suggest the unusual selectivity is due to the irreversible trapping of the Rh–alkyl species along the branched pathway, in comparison to the more reversible linear pathway. A precatalytic equilibrium mixture of rhodium species was observed by high-pressure in situ NMR spectroscopy, suggesting this equilibrium is the catalytic resting state
    corecore