23 research outputs found

    Rapid assessment of Hib disease burden in Vietnam

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several countries have applied the <it>Haemophilus influenzae </it>type b (Hib) rapid assessment tool (RAT) to estimate the burden of Hib disease where resources for hospital- or population-based surveillance are limited. In Vietnam, we used the Hib RAT to estimate the burden of Hib pneumonia and meningitis prior to Hib vaccine introduction.</p> <p>Methods</p> <p>Laboratory, hospitalization and mortality data were collected for the period January 2004 through December 2005 from five representative hospitals. Based on the WHO Hib RAT protocol, standardized MS Excel spreadsheets were completed to generate meningitis and pneumonia case and death figures.</p> <p>Results</p> <p>We found 35 to 77 Hib meningitis deaths and 441 to 957 Hib pneumonia deaths among children < 5 years of age annually in Vietnam. Overall, the incidence of Hib meningitis was estimated at 18/100,000 (95% confidence interval, CI, 15.1-21.6). The estimated Hib meningitis incidence in children < 5 years age was higher in Ho Chi Minh City (22.5/100,000 [95% CI, 18.4-27.5]) compared to Hanoi (9.8/100,000 [95% CI, 6.5-14.8]). The Hib RAT suggests that there are a total of 883 to 1,915 cases of Hib meningitis and 4,414 to 9,574 cases of Hib pneumonia per year in Vietnam.</p> <p>Conclusions</p> <p>In Hanoi, the estimated incidence of Hib meningitis for children < 5 years of age was similar to that described in previous population-based studies of Hib meningitis conducted from 1999 through 2002. Results from the Hib RAT suggest that there is a substantial, yet unmeasured, disease burden associated with Hib pneumonia in Vietnamese children.</p

    A Multi-Center Randomized Trial to Assess the Efficacy of Gatifloxacin versus Ciprofloxacin for the Treatment of Shigellosis in Vietnamese Children

    Get PDF
    The bacterial genus Shigella is the most common cause of dysentery (diarrhea containing blood and/or mucus) and the disease is common in developing countries with limitations in sanitation. Children are most at risk of infection and frequently require hospitalization and antimicrobial therapy. The WHO currently recommends the fluoroquinolone, ciprofloxacin, for the treatment of childhood Shigella infections. In recent years there has been a sharp increase in the number of organisms that exhibit resistance to nalidixic acid (an antimicrobial related to ciprofloxacin), corresponding with reduced susceptibility to ciprofloxacin. We hypothesized that infections with Shigella strains that demonstrate resistance to nalidixic acid may prevent effective treatment with ciprofloxacin. We performed a randomized controlled trial to compare 3 day ciprofloxacin therapy with 3 days of gatifloxacin, a newer generation fluoroquinolone with greater activity than ciprofloxacin. We measured treatment failure and time to the cessation of individual disease symptoms in 249 children with dysentery treated with gatifloxacin and 245 treated with ciprofloxacin. We could identify no significant differences in treatment failure between the two groups or in time to the cessation of individual symptoms. We conclude that, in Vietnam, ciprofloxacin and gatifloxacin are similarly effective for the treatment of acute dysentery

    The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed.</p> <p>Results</p> <p>Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented.</p> <p>Conclusions</p> <p>This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.</p

    An on-chip microfluidic pressure regulator that facilitates reproducible loading of cells and hydrogels into microphysiological system platforms

    No full text
    Coculturing multiple cell types together in 3-dimensional (3D) cultures better mimics the in vivo microphysiological environment, and has become widely adopted in recent years with the development of organ-on-chip systems. However, a bottleneck in set-up of these devices arises as a result of the delivery of the gel into the microfluidic chip being sensitive to pressure fluctuations, making gel confinement at a specific region challenging, especially when manual operation is performed. In this paper, we present a novel design of an on-chip regulator module with pressure-releasing safety microvalves that can facilitate stable gel delivery into designated microchannel regions while maintaining well-controlled, non-bursting gel interfaces. This pressure regulator design can be integrated into different microfluidic chip designs and is compatible with a wide variety of gel injection apparatuses operated automatically or manually at different flow rates. The sensitivity and working range of this pressure regulator can be adjusted by changing the width of its pressure releasing safety microvalve design. The effectiveness of the design is validated by its incorporation into a microfluidic platform we have developed for generating 3D vascularized micro-organs (VMOs). Reproducible gel loading is demonstrated for both an automatic syringe pump and a manually-operated micropipettor. This design allows for rapid and reproducible loading of hydrogels into microfluidic devices without the risk of bursting gel-air interfaces

    Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs

    No full text
    Angiogenesis is a complex process that is required for development and tissue regeneration and it may be affected by many pathological conditions. Chemicals and drugs can impact formation and maintenance of the vascular networks; these effects may be both desirable (e.g., anti-cancer drugs) or unwanted (e.g., side effects of drugs). A number of in vivo and in vitro models exist for studies of angiogenesis and endothelial cell function, including organ-on-a-chip microphysiological systems. An arrayed organ-on-a-chip platform on a 96-well plate footprint that incorporates perfused microvessels, with and without tumors, was recently developed and it was shown that survival of the surrounding tissue was dependent on delivery of nutrients through the vessels. Here we describe a technology transfer of this complex microphysiological model between laboratories and demonstrate that reproducibility and robustness of these tissue chip-enabled experiments depend primarily on the source of the endothelial cells. The model was highly reproducible between laboratories and was used to demonstrate the advantages of the perfusable vascular networks for drug safety evaluation. As a proof-of-concept, we tested Fluorouracil (1-1,000 μM), Vincristine (1-1,000 nM), and Sorafenib (0.1-100 μM), in the perfusable and non-perfusable micro-organs, and in a colon cancer-containing micro-tumor model. Tissue chip experiments were compared to the traditional monolayer cultures of endothelial or tumor cells. These studies showed that human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs. The data from the 3D models confirmed advantages of the physiological environment as compared to 2D cell cultures. We demonstrated how these models can be translated into practice by verifying that the endothelial cell source and passage are critical elements for establishing a perfusable model
    corecore