14,829 research outputs found

    The Self-Organization of Interaction Networks for Nature-Inspired Optimization

    Full text link
    Over the last decade, significant progress has been made in understanding complex biological systems, however there have been few attempts at incorporating this knowledge into nature inspired optimization algorithms. In this paper, we present a first attempt at incorporating some of the basic structural properties of complex biological systems which are believed to be necessary preconditions for system qualities such as robustness. In particular, we focus on two important conditions missing in Evolutionary Algorithm populations; a self-organized definition of locality and interaction epistasis. We demonstrate that these two features, when combined, provide algorithm behaviors not observed in the canonical Evolutionary Algorithm or in Evolutionary Algorithms with structured populations such as the Cellular Genetic Algorithm. The most noticeable change in algorithm behavior is an unprecedented capacity for sustainable coexistence of genetically distinct individuals within a single population. This capacity for sustained genetic diversity is not imposed on the population but instead emerges as a natural consequence of the dynamics of the system

    Use of statistical outlier detection method in adaptive evolutionary algorithms

    Full text link
    In this paper, the issue of adapting probabilities for Evolutionary Algorithm (EA) search operators is revisited. A framework is devised for distinguishing between measurements of performance and the interpretation of those measurements for purposes of adaptation. Several examples of measurements and statistical interpretations are provided. Probability value adaptation is tested using an EA with 10 search operators against 10 test problems with results indicating that both the type of measurement and its statistical interpretation play significant roles in EA performance. We also find that selecting operators based on the prevalence of outliers rather than on average performance is able to provide considerable improvements to adaptive methods and soundly outperforms the non-adaptive case

    Synthesis and characterization of mesoporic materials containing highly dispersed cobalt

    Get PDF
    Highly dispersed Co particles in MCM-41 were prepared by direct addition of CoCl2 to the synthesis gel. The small clusters of Co did not sinter during reduction and sulfidation. Incorporation of Co into the MCM-41 lattice was not observed. The addition of Co to the synthesis gel did not alter the structural characteristics of the MCM-41 samples

    Screening of organically based fungicides for apple scab (Venturia inaequalis) control and a histopathological study of the mode of action of a resistance inducer.

    Get PDF
    A range of possible substitutes for copper-based fungicides for control of apple scab (Venturia inaequalis) in organic growing were tested in laboratory and growth chamber experiments in the Danish project StopScab (2002-2004). Eighteen crude plant extracts, 19 commercial plant-based products and 6 miscellaneous compounds were tested for their ability to reduce scab symptoms on apple seedlings. Most of the compounds were also tested for their effect on conidium germination on glass slides. Fourteen of the crude plant extracts, 13 of the commercial plant products and 5 of the miscellaneous compounds showed promising control efficacies when used either preventively or curatively in the plant assay. A histopathological study was carried out on the mode of action of the resistance inducer, acibenzolar-S-methyl (ASM), which reduced scab severity and sporulation on apple seedlings in several plant assays when applied as preventive treatment. The effect of the inducer on key pre- and post-penetration events of V. inaequalis was studied and compared to these events in water-treated control leaves. The histopathological study showed that the inducer had its strongest effect on post-penetration events indicated by delayed infection and reduced stroma development. In addition, a small but significant inhibition of conidial germination and a stimulation of germ tube length were observed. This investigation provides new histopathological evidence for the mode of action of ASM against V. inaequalis and serves as a model for evaluation of the mechanisms by which the organically based fungicides reduce infection of V. inaequalis

    Low-Energy Properties of a One-dimensional System of Interacting bosons with Boundaries

    Full text link
    The ground state properties and low-lying excitations of a (quasi) one-dimensional system of longitudinally confined interacting bosons are studied. This is achieved by extending Haldane's harmonic-fluid description to open boundary conditions. The boson density, one-particle density matrix, and momentum distribution are obtained accounting for finite-size and boundary effects. Friedel oscillations are found in the density. Finite-size scaling of the momentum distribution at zero momentum is proposed as a method to obtain from the experiment the exponent that governs phase correlations. The strong correlations between bosons induced by reduced dimensionality and interactions are displayed by a Bijl-Jastrow wave function for the ground state, which is also derived.Comment: Final published version. Minor changes with respect to the previous versio

    Credit Assignment in Adaptive Evolutionary Algorithms

    Get PDF
    In this paper, a new method for assigning credit to search\ud operators is presented. Starting with the principle of optimizing\ud search bias, search operators are selected based on an ability to\ud create solutions that are historically linked to future generations.\ud Using a novel framework for defining performance\ud measurements, distributing credit for performance, and the\ud statistical interpretation of this credit, a new adaptive method is\ud developed and shown to outperform a variety of adaptive and\ud non-adaptive competitors

    The Self-Organization of Interaction Networks for Nature-Inspired Optimization

    Get PDF
    Over the last decade, significant progress has been made in understanding complex biological systems, however there have been few attempts at incorporating this knowledge into nature inspired optimization algorithms. In this paper, we present a first attempt at incorporating some of the basic structural properties of complex biological systems which are believed to be necessary preconditions for system qualities such as robustness. In particular, we focus on two important conditions missing in Evolutionary Algorithm populations; a self-organized definition of locality and interaction epistasis. We demonstrate that these two features, when combined, provide algorithm behaviors not observed in the canonical Evolutionary Algorithm or in Evolutionary Algorithms with structured populations such as the Cellular Genetic Algorithm. The most noticeable change in algorithm behavior is an unprecedented capacity for sustainable coexistence of genetically distinct individuals within a single population. This capacity for sustained genetic diversity is not imposed on the population but instead emerges as a natural consequence of the dynamics of the system

    Making and breaking power laws in evolutionary algorithm population dynamics

    Get PDF
    Deepening our understanding of the characteristics and behaviors of population-based search algorithms remains an important ongoing challenge in Evolutionary Computation. To date however, most studies of Evolutionary Algorithms have only been able to take place within tightly restricted experimental conditions. For instance, many analytical methods can only be applied to canonical algorithmic forms or can only evaluate evolution over simple test functions. Analysis of EA behavior under more complex conditions is needed to broaden our understanding of this population-based search process. This paper presents an approach to analyzing EA behavior that can be applied to a diverse range of algorithm designs and environmental conditions. The approach is based on evaluating an individual’s impact on population dynamics using metrics derived from genealogical graphs.\ud From experiments conducted over a broad range of conditions, some important conclusions are drawn in this study. First, it is determined that very few individuals in an EA population have a significant influence on future population dynamics with the impact size fitting a power law distribution. The power law distribution indicates there is a non-negligible probability that single individuals will dominate the entire population, irrespective of population size. Two EA design features are however found to cause strong changes to this aspect of EA behavior: i) the population topology and ii) the introduction of completely new individuals. If the EA population topology has a long path length or if new (i.e. historically uncoupled) individuals are continually inserted into the population, then power law deviations are observed for large impact sizes. It is concluded that such EA designs can not be dominated by a small number of individuals and hence should theoretically be capable of exhibiting higher degrees of parallel search behavior

    Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    Get PDF
    Hydrogen-oxygen solid polymer electrolyte (SPE) fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. These solid electrolyte devices have been under continuous development for over 30 years. This experience has resulted in a demonstrated ten-year SPE cell life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluoride loss rates and average expected ultimate cell life. This relationship is shown. Several features have been introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability has been demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density
    • …
    corecore