11,612 research outputs found

    An Efficient Data-aided Synchronization in L-DACS1 for Aeronautical Communications

    Full text link
    L-band Digital Aeronautical Communication System type-1 (L-DACS1) is an emerging standard that aims at enhancing air traffic management (ATM) by transitioning the traditional analog aeronautical communication systems to the superior and highly efficient digital domain. L-DACS1 employs modern and efficient orthogonal frequency division multiplexing (OFDM) modulation technique to achieve more efficient and higher data rate in comparison to the existing aeronautical communication systems. However, the performance of OFDM systems is very sensitive to synchronization errors. L-DACS1 transmission is in the L-band aeronautical channels that suffer from large interference and large Doppler shifts, which makes the synchronization for L-DACS more challenging. This paper proposes a novel computationally efficient synchronization method for L-DACS1 systems that offers robust performance. Through simulation, the proposed method is shown to provide accurate symbol timing offset (STO) estimation as well as fractional carrier frequency offset (CFO) estimation in a range of aeronautical channels. In particular, it can yield excellent synchronization performance in the face of a large carrier frequency offset.Comment: In the proceeding of International Conference on Data Mining, Communications and Information Technology (DMCIT

    Efficient multi-standard cognitive radios on FPGAs

    Get PDF
    Cognitive radios that support multiple standards and modify operation depending on environmental conditions are becoming more important as the demand for higher bandwidth and efficient spectrum use increases. Traditional implementations in custom ASICs cannot support such flexibility, with standards changing at a faster pace, while software baseband implementations fail to achieve the performance required. Hence, FPGAs offer an ideal platform bringing together flexibility, performance, and efficiency. This work explores the possible techniques for designing multi-standard radios on FPGAs, and explores how partial reconfiguration can be leveraged in a way that is amenable for domain experts with minimal FPGA knowledge

    Shaping spectral leakage for IEEE 802.11 p vehicular communications

    Get PDF
    IEEE 802.11p is a recently defined standard for the physical (PHY) and medium access control (MAC) layers for Dedicated Short-Range Communications. Four Spectrum Emission Masks (SEMs) are specified in 802.11p that are much more stringent than those for current 802.11 systems. In addition, the guard interval in 802.11p has been lengthened by reducing the bandwidth to support vehicular communication (VC) channels, and this results in a narrowing of the frequency guard. This raises a significant challenge for filtering the spectrum of 802.11p signals to meet the specifications of the SEMs. We investigate state of the art pulse shaping and filtering techniques for 802.11p, before proposing a new method of shaping the 802.11p spectral leakage to meet the most stringent, class D, SEM specification. The proposed method, performed at baseband to relax the strict constraints of the radio frequency (RF) front-end, allows 802.11p systems to be implemented using commercial off-the- shelf (COTS) 802.11a RF hardware, resulting in reduced total system cost

    Synthesis and characterization of mesoporic materials containing highly dispersed cobalt

    Get PDF
    Highly dispersed Co particles in MCM-41 were prepared by direct addition of CoCl2 to the synthesis gel. The small clusters of Co did not sinter during reduction and sulfidation. Incorporation of Co into the MCM-41 lattice was not observed. The addition of Co to the synthesis gel did not alter the structural characteristics of the MCM-41 samples

    General Hospitals, Specialty Hospitals and Financially Vulnerable Patients

    Get PDF
    Examines whether specialty hospitals draw well-insured patients away from general and safety-net hospitals, reducing their ability to cross-subsidize less profitable services and uncompensated care, in three cities. Notes challenges and implications

    Giant Spin Seebeck Effect through an Interface Organic Semiconductor

    Full text link
    Interfacing an organic semiconductor C60 with a non-magnetic metallic thin film (Cu or Pt) has created a novel heterostructure that is ferromagnetic at ambient temperature, while its interface with a magnetic metal (Fe or Co) can tune the anisotropic magnetic surface property of the material. Here, we demonstrate that sandwiching C60 in between a magnetic insulator (Y3Fe5O12: YIG) and a non-magnetic, strong spin-orbit metal (Pt) promotes highly efficient spin current transport via the thermally driven spin Seebeck effect (SSE). Experiments and first principles calculations consistently show that the presence of C60 reduces significantly the conductivity mismatch between YIG and Pt and the surface perpendicular magnetic anisotropy of YIG, giving rise to enhanced spin mixing conductance across YIG/C60/Pt interfaces. As a result, a 600% increase in the SSE voltage (VLSSE) has been realized in YIG/C60/Pt relative to YIG/Pt. Temperature-dependent SSE voltage measurements on YIG/C60/Pt with varying C60 layer thicknesses also show an exponential increase in VLSSE at low temperatures below 200 K, resembling the temperature evolution of spin diffusion length of C60. Our study emphasizes the important roles of the magnetic anisotropy and the spin diffusion length of the intermediate layer in the SSE in YIG/C60/Pt structures, providing a new pathway for developing novel spin-caloric materials

    Spinodal nanodecomposition in magnetically doped semiconductors

    Full text link
    This review presents the recent progress in computational materials design, experimental realization, and control methods of spinodal nanodecomposition under three- and two-dimensional crystal-growth conditions in spintronic materials, such as magnetically doped semiconductors. The computational description of nanodecomposition, performed by combining first-principles calculations with kinetic Monte Carlo simulations, is discussed together with extensive electron microscopy, synchrotron radiation, scanning probe, and ion beam methods that have been employed to visualize binodal and spinodal nanodecomposition (chemical phase separation) as well as nanoprecipitation (crystallographic phase separation) in a range of semiconductor compounds with a concentration of transition metal (TM) impurities beyond the solubility limit. The role of growth conditions, co-doping by shallow impurities, kinetic barriers, and surface reactions in controlling the aggregation of magnetic cations is highlighted. According to theoretical simulations and experimental results the TM-rich regions appear either in the form of nanodots (the {\em dairiseki} phase) or nanocolumns (the {\em konbu} phase) buried in the host semiconductor. Particular attention is paid to Mn-doped group III arsenides and antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped group II chalcogenides, in which ferromagnetic features persisting up to above room temperature correlate with the presence of nanodecomposition and account for the application-relevant magneto-optical and magnetotransport properties of these compounds. Finally, it is pointed out that spinodal nanodecomposition can be viewed as a new class of bottom-up approach to nanofabrication.Comment: 72 pages, 79 figure

    Gamow-Teller strength distributions for double-beta-decaying nuclei within continuum-QRPA

    Full text link
    A version of the pn-continuum-QRPA is outlined and applied to describe the Gamow-Teller strength distributions for ββ\beta\beta-decaying open-shell nuclei. The calculation results obtained for the pairs of nuclei 116^{116}Cd-Sn and 130^{130}Te-Xe are compared with available experimental data.Comment: 8 pages, 3 figures, To appear in the proceedings of "Nucleus-2007: Fundamental problems of nuclear physics, atomic power engineering and nuclear technologies" Voronezh, Russia, June 25-29, 200

    Non-minimal Einstein-Yang-Mills-Higgs theory: Associated, color and color-acoustic metrics for the Wu-Yang monopole model

    Full text link
    We discuss a non-minimal Einstein-Yang-Mills-Higgs model with uniaxial anisotropy in the group space associated with the Higgs field. We apply this theory to the problem of propagation of color and color-acoustic waves in the gravitational background related to the non-minimal regular Wu-Yang monopole.Comment: 14 pages, no figure
    • …
    corecore