40 research outputs found

    ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells

    Get PDF
    Secretory protein trafficking relies on the COPI coat, which by assembling into a lattice on Golgi membranes concentrates cargo at specific sites and deforms the membranes at these sites into coated buds and carriers. The GTPase-activating protein (GAP) responsible for catalyzing Arf1 GTP hydrolysis is an important part of this system, but the mechanism whereby ArfGAP is recruited to the coat, its stability within the coat, and its role in maintenance of the coat are unclear. Here, we use FRAP to monitor the membrane turnover of GFP-tagged versions of ArfGAP1, Arf1, and coatomer in living cells. ArfGAP1 underwent fast cytosol/Golgi exchange with ∌40% of the exchange dependent on engagement of ArfGAP1 with coatomer and Arf1, and affected by secretory cargo load. Permanent activation of Arf1 resulted in ArfGAP1 being trapped on the Golgi in a coatomer-dependent manner. These data suggest that ArfGAP1, coatomer and Arf1 play interdependent roles in the assembly–disassembly cycle of the COPI coat in vivo

    Golgi Membranes Are Absorbed into and Reemerge from the ER during Mitosis

    Get PDF
    AbstractQuantitative imaging and photobleaching were used to measure ER/Golgi recycling of GFP-tagged Golgi proteins in interphase cells and to monitor the dissolution and reformation of the Golgi during mitosis. In interphase, recycling occurred every 1.5 hr, and blocking ER egress trapped cycling Golgi enzymes in the ER with loss of Golgi structure. In mitosis, when ER export stops, Golgi proteins redistributed into the ER as shown by quantitative imaging in vivo and immuno-EM. Comparison of the mobilities of Golgi proteins and lipids ruled out the persistence of a separate mitotic Golgi vesicle population and supported the idea that all Golgi components are absorbed into the ER. Moreover, reassembly of the Golgi complex after mitosis failed to occur when ER export was blocked. These results demonstrate that in mitosis the Golgi disperses and reforms through the intermediary of the ER, exploiting constitutive recycling pathways. They thus define a novel paradigm for Golgi genesis and inheritance

    Evaluation of Sidewalk Autonomous Delivery Robot Interactions with Pedestrians and Bicyclists

    Get PDF
    69A3551747109Information and communication technology advancements and an increased demand for contactless deliveries after the Covid-19 pandemic outbreak have resulted in the growing adoption of automated delivery services. Across university campuses, the deployment of sidewalk autonomous delivery robots (SADRs) has provided students, staff, and faculty a convenient last-mile delivery option. However, SADRs traverse campuses on paths designed for pedestrians and bicyclists, which could potentially result in conflicts among different pathway users and unsafe travel conditions. This report\u2014comprising two studies\u2014offers evidence on the objective safety and perceived comfort experienced by pedestrians and bicyclists interacting with SADRs on multi-use paths. In the first study, SADR interactions with human pathway users observed via field-recorded video collected at Northern Arizona University (NAU) campus were examined by employing the surrogate safety measure of post-encroachment time. The second study analyzed the reported comfort of SADR-involved interactions filmed from pedestrian and bicyclist perspectives and collected via the administration of a survey instrument to an NAU population with experience in the adoption of automated food delivery services and SADR-involved interactions. This report\u2019s findings are intended to help inform new facility management strategies that support the safe introduction of SADRs on shared-use facilities in current and future settings

    Salivary gland branching morphogenesis: a quantitative systems analysis of the Eda/Edar/NFÎșB paradigm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ectodysplasin-A appears to be a critical component of branching morphogenesis. Mutations in mouse <it>Eda </it>or human <it>EDA </it>are associated with absent or hypoplastic sweat glands, sebaceous glands, lacrimal glands, salivary glands (SMGs), mammary glands and/or nipples, and mucous glands of the bronchial, esophageal and colonic mucosa. In this study, we utilized <it>Eda</it><sup><it>Ta </it></sup>(Tabby) mutant mice to investigate how a marked reduction in functional Eda propagates with time through a defined genetic subcircuit and to test the proposition that canonical NFÎșB signaling is sufficient to account for the differential expression of developmentally regulated genes in the context of <it>Eda </it>polymorphism.</p> <p>Results</p> <p>The quantitative systems analyses do not support the stated hypothesis. For most NFÎșB-regulated genes, the observed time course of gene expression is nearly unchanged in Tabby (<it>Eda</it><sup><it>Ta</it></sup>) as compared to wildtype mice, as is NFÎșB itself. Importantly, a subset of genes is dramatically differentially expressed in Tabby (<it>Edar</it>, <it>Fgf8</it>, <it>Shh</it>, <it>Egf</it>, <it>Tgfa</it>, <it>Egfr</it>), strongly suggesting the existence of an alternative Eda-mediated transcriptional pathway pivotal for SMG ontogeny. Experimental and <it>in silico </it>investigations have identified C/EBPα as a promising candidate.</p> <p>Conclusion</p> <p>In Tabby SMGs, upregulation of the Egf/Tgfα/Egfr pathway appears to mitigate the potentially severe abnormal phenotype predicted by the downregulation of Fgf8 and Shh. Others have suggested that the buffering of the phenotypic outcome that is coincident with variant Eda signaling could be a common mechanism that permits viable and diverse phenotypes, normal and abnormal. Our results support this proposition. Further, if branching epithelia use variations of a canonical developmental program, our results are likely applicable to understanding the phenotypes of other branching organs affected by <it>Eda </it>(<it>EDA</it>) mutation.</p

    Multi-model seascape genomics identifies distinct environmental drivers of selection among sympatric marine species

    Get PDF
    Background As global change and anthropogenic pressures continue to increase, conservation and management increasingly needs to consider species’ potential to adapt to novel environmental conditions. Therefore, it is imperative to characterise the main selective forces acting on ecosystems, and how these may influence the evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare putative environmental drivers of selection in three sympatric southern African marine invertebrates with contrasting ecology and life histories: Cape urchin (Parechinus angulosus), Common shore crab (Cyclograpsus punctatus), and Granular limpet (Scutellastra granularis). Results Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more strongly with genomic variation in C. punctatus and P. angulosus. Differences were also found in genomic structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for S. granularis and P. angulosus, but not for C. punctatus. Conclusion The findings illustrate distinct evolutionary potential across species, suggesting that species-specific habitat requirements and responses to environmental stresses may be better predictors of evolutionary patterns than the strong environmental gradients within the region. We also found large discrepancies between outlier detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems to global change

    SBML Level 3: an extensible format for the exchange and reuse of biological models

    Get PDF
    Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution

    Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport.

    No full text
    Cytosolic coat proteins that bind reversibly to membranes have a central function in membrane transport within the secretory pathway. One well-studied example is COPI or coatomer, a heptameric protein complex that is recruited to membranes by the GTP-binding protein Arf1. Assembly into an electron-dense coat then helps in budding off membrane to be transported between the endoplasmic reticulum (ER) and Golgi apparatus. Here we propose and corroborate a simple model for coatomer and Arf1 activity based on results analysing the distribution and lifetime of fluorescently labelled coatomer and Arf1 on Golgi membranes of living cells. We find that activated Arf1 brings coatomer to membranes. However, once associated with membranes, Arf1 and coatomer have different residence times: coatomer remains on membranes after Arf1-GTP has been hydrolysed and dissociated. Rapid membrane binding and dissociation of coatomer and Arf1 occur stochastically, even without vesicle budding. We propose that this continuous activity of coatomer and Arf1 generates kinetically stable membrane domains that are connected to the formation of COPI-containing transport intermediates. This role for Arf1/coatomer might provide a model for investigating the behaviour of other coat protein systems within cells

    Transport through the Golgi Apparatus by Rapid Partitioning within a Two-Phase Membrane System

    Get PDF
    SummaryThe prevailing view of intra-Golgi transport is cisternal progression, which has a key prediction—that newly arrived cargo exhibits a lag or transit time before exiting the Golgi. Instead, we find that cargo molecules exit at an exponential rate proportional to their total Golgi abundance with no lag. Incoming cargo molecules rapidly mix with those already in the system and exit from partitioned domains with no cargo privileged for export based on its time of entry into the system. Given these results, we constructed a new model of intra-Golgi transport that involves rapid partitioning of enzymes and transmembrane cargo between two lipid phases combined with relatively rapid exchange among cisternae. Simulation and experimental testing of this rapid partitioning model reproduced all the key characteristics of the Golgi apparatus, including polarized lipid and protein gradients, exponential cargo export kinetics, and cargo waves
    corecore