23 research outputs found

    The Impact of HAART on the Respiratory Complications of HIV Infection: Longitudinal Trends in the MACS and WIHS Cohorts

    Get PDF
    Objective: To review the incidence of respiratory conditions and their effect on mortality in HIV-infected and uninfected individuals prior to and during the era of highly active antiretroviral therapy (HAART). Design: Two large observational cohorts of HIV-infected and HIV-uninfected men (Multicenter AIDS Cohort Study [MACS]) and women (Women's Interagency HIV Study [WIHS]), followed since 1984 and 1994, respectively. Methods: Adjusted odds or hazards ratios for incident respiratory infections or non-infectious respiratory diagnoses, respectively, in HIV-infected compared to HIV-uninfected individuals in both the pre-HAART (MACS only) and HAART eras; and adjusted Cox proportional hazard ratios for mortality in HIV-infected persons with lung disease during the HAART era. Results: Compared to HIV-uninfected participants, HIV-infected individuals had more incident respiratory infections both pre-HAART (MACS, odds ratio [adjusted-OR], 2.4; 95% confidence interval [CI], 2.2-2.7; p<0.001) and after HAART availability (MACS, adjusted-OR, 1.5; 95%CI 1.3-1.7; p<0.001; WIHS adjusted-OR, 2.2; 95%CI 1.8-2.7; p<0.001). Chronic obstructive pulmonary disease was more common in MACS HIV-infected vs. HIV-uninfected participants pre-HAART (hazard ratio [adjusted-HR] 2.9; 95%CI, 1.02-8.4; p = 0.046). After HAART availability, non-infectious lung diseases were not significantly more common in HIV-infected participants in either MACS or WIHS participants. HIV-infected participants in the HAART era with respiratory infections had an increased risk of death compared to those without infections (MACS adjusted-HR, 1.5; 95%CI, 1.3-1.7; p<0.001; WIHS adjusted-HR, 1.9; 95%CI, 1.5-2.4; p<0.001). Conclusion: HIV infection remained a significant risk for infectious respiratory diseases after the introduction of HAART, and infectious respiratory diseases were associated with an increased risk of mortality. © 2013 Gingo et al

    SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs

    Get PDF
    Higher eukaryotic chromosomes are organized into topologically constrained functional domains; however, the molecular mechanisms required to sustain these complex interphase chromatin structures are unknown. A stable matrix underpinning nuclear organization was hypothesized, but the idea was abandoned as more dynamic models of chromatin behavior became prevalent. Here, we report that scaffold attachment factor A (SAF-A), originally identified as a structural nuclear protein, interacts with chromatin-associated RNAs (caRNAs) via its RGG domain to regulate human interphase chromatin structures in a transcription-dependent manner. Mechanistically, this is dependent on SAF-A’s AAA+ ATPase domain, which mediates cycles of protein oligomerization with caRNAs, in response to ATP binding and hydrolysis. SAF-A oligomerization decompacts large-scale chromatin structure while SAF-A loss or monomerization promotes aberrant chromosome folding and accumulation of genome damage. Our results show that SAF-A and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes large-scale chromosome structures and protects the genome from instability
    corecore