1,342 research outputs found
Carbon Nanotubes by a CVD Method. Part I: Synthesis and Characterization of the (Mg, Fe)O Catalysts
The controlled synthesis of carbon nanotubes by chemical vapor deposition requires tailored and wellcharacterized catalyst materials. We attempted to synthesize Mg1-xFexO oxide solid solutions by the combustion route, with the aim of performing a detailed investigation of the influence of the synthesis conditions (nitrate/urea ratio and the iron content) on the valency and distribution of the iron ions and phases. Notably, characterization of the catalyst materials is performed using 57Fe Mo¨ssbauer spectroscopy, X-ray diffraction, and electron microscopy. Several iron species are detected including Fe2+ ions substituting for Mg2+ in the MgO lattice, Fe3+ ions dispersed in the octahedral sites of MgO, different clusters of Fe3+ ions, and MgFe2O4-like nanoparticles. The dispersion of these species and the microstructure of the oxides are discussed. Powders markedly different from one another that may serve as model systems for further study are identified. The formation of carbon nanotubes upon reduction in a H2/CH4 gas atmosphere of the selected powders is reported in a companion paper
The phase diagram of high-Tc's: Influence of anisotropy and disorder
We propose a phase diagram for the vortex structure of high temperature
superconductors which incorporates the effects of anisotropy and disorder. It
is based on numerical simulations using the three-dimensional Josephson
junction array model. We support the results with an estimation of the internal
energy and configurational entropy of the system. Our results give a unified
picture of the behavior of the vortex lattice, covering from the very
anysotropic BiSrCaCuO to the less anisotropic YBaCuO, and from the first order
melting ocurring in clean samples to the continuous transitions observed in
samples with defects.Comment: 8 pages with 7 figure
Thermal Conversion of Guanylurea Dicyanamide into Graphitic Carbon Nitride via Prototype CNx Precursors
Guanylurea dicyanamide, [(H2N)C(-O)NHC(NH2)2][N(CN)2], has been synthesized by ion exchange reaction in aqueous solution and structurally characterized by single-crystal X-ray diffraction (C2/c, a = 2249.0(5) pm, b = 483.9(1) pm, c = 1382.4(3) pm, β = 99.49(3)°, V = 1483.8(5) × 106 pm3, T = 130 K). The thermal behavior of the molecular salt has been studied by thermal analysis, temperature-programmed X-ray powder diffraction, FTIR spectroscopy, and mass spectrometry between room temperature and 823 K. The results were interpreted on a molecular level in terms of a sequence of thermally induced addition, cyclization, and elimination reactions. As a consequence, melamine (2,4,6-triamino-1,3,5-triazine) is formed with concomitant loss of HNCO. Further condensation of melamine yields the prototypic CNx precursor melem (2,6,10-triamino-s-heptazine, C6N7(NH2)3), which alongside varying amounts of directly formed CNxHy material transforms into layered CNxHy phases without significant integration of oxygen into the core framework owing to the evaporation of HNCO. Thus, further evidence can be added to melamine and its condensation product melem acting as “key intermediates” in the synthetic pathway toward graphitic CNxHy materials, whose exact constitution is still a point at issue. Due to the characteristic formation process and hydrogen content a close relationship with the polymer melon is evident. In particular, the thermal transformation of guanylurea dicyanamide clearly demonstrates that the formation of volatile compounds such as HNCO during thermal decomposition may render a large variety of previously not considered molecular compounds suitable CNx precursors despite the presence of oxygen in the starting material
Role of Rote Learning as an ESL Learning Strategy
Abstract Hundreds of thousands of graduates of both professional and non-professional courses are churned out every year by the universities and colleges in India. Unfortunately, a majority of them often find themselves in the status of perennial jobseekers running from one establishment to another. Ultimately, most of them reconcile themselves to the fate of being rejected by the job market as "unemployable", in spite of their score cards bearing the stamp of a 'first-class' or 'super-first class' . What causes this anomaly? This article attempts to probe some of the reasons behind the malady, from the perspective of ESL (English as Second Language) proficiency. The investigation is done with the help of a random survey carried out among a group of ESL learners at the point of their entry into various undergraduate courses in South India. Nevertheless, the findings of this study would be representative of the status of the ESL proficiency of a vast majority of the Indian student community
The Molecular Genetic Architecture of Self-Employment
Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable-entrepreneurship-that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σg2/σP2= 25%, h2= 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with p<10-5were tested in a replication sample (n = 3,271), but none replicated. Furthermore, a gene-based test shows that none of the genes that were previously suggested in the literature to influence entrepreneurship reveal significant associations. Finally, SNP-based genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases
The big problem of small particles : a comparison of methods for determination of particle size in nanocrystalline anatase powders
We compare different methods for particle size determination in nanocrystalline anatase (TiO2) powders: transmission electron microscopy (TEM), nitrogen adsorption measurements, mercury porosimetry, and X-ray diffraction(XRD). The main source of errors in TEM is the sampling of the powder population, whereas in XRD the deconvolution of peak broadening due to instrument, microstrains, and crystalline domain size is delicate and can lead to unreliable results. Different approaches including Scherrer and Williamson-Hall equations are discussed. The presence of mesopores due to agglomerate formation is clearly revealed in adsorption measurements and porosimetry
Dialkyl and Methyl-Alkyl Zirconocenes: Synthesis and Characterization of Zirconocene-Alkyls That Model the Polymeryl Chain in Alkene Polymerizations
Long-Lived Triplet State Charge Separation in Novel Piperidine-Bridged Donor−Acceptor Systems
- …
