1,060 research outputs found
Target annihilation by diffusing particles in inhomogeneous geometries
The survival probability of immobile targets, annihilated by a population of
random walkers on inhomogeneous discrete structures, such as disordered solids,
glasses, fractals, polymer networks and gels, is analytically investigated. It
is shown that, while it cannot in general be related to the number of distinct
visited points, as in the case of homogeneous lattices, in the case of bounded
coordination numbers its asymptotic behaviour at large times can still be
expressed in terms of the spectral dimension , and its exact
analytical expression is given. The results show that the asymptotic survival
probability is site independent on recurrent structures (),
while on transient structures () it can strongly depend on the
target position, and such a dependence is explicitly calculated.Comment: To appear in Physical Review E - Rapid Communication
Collision number statistics for transport processes
Many physical observables can be represented as a particle spending some
random time within a given domain. For a broad class of transport-dominated
processes, we detail how it is possible to express the moments of the number of
particle collisions in an arbitrary volume in terms of repeated convolutions of
the ensemble equilibrium distribution. This approach is shown to generalize the
celebrated Kac formula for the moments of residence times, which is recovered
in the diffusion limit. Some practical applications are illustrated for
bounded, unbounded and absorbing domains.Comment: 4 pages, 4 figure
Clinical improvement and radiological progression in a girl with early onset scoliosis (EOS) treated conservatively – a case report
BACKGROUND: Chêneau-Brace treatment of a certain standard reduces the rate of surgery, prevents progression and in a certain patient population leads to marked improvement of Cobb angle and cosmetic appearance. During the last two years a patient refusing surgery with a double major curvature of initially 60° showed a clear cosmetic improvement and a clear radiological progression at the same time. The findings of this patient have been reviewed in order to find out how cosmetic appearance and Cobb angle can develop differently. METHODS: The patient entered conservative treatment at the age of 13 years, premenarchial with Tanner II and a Cobb angle of 60° thoracic and 59° lumbar. The angle of trunk rotation (ATR; Scoliometer) was 13° thoracic and 13° lumbar. We have documented the findings of this patient (Surface topography, ATR, Cobb angles and angles of vertebral rotation (according to Raimondi) during the treatment period (27 Month) until 2 years after the onset of menarche. RESULTS: After a treatment time of 27 Month the Cobb angle increased to 74° thoracic and 65° lumbar. The angles of vertebral rotation according to Raimondi increased slightly from 26° thoracic and 28° lumbar to 30° thoracic and 28° lumbar. The ATR improved to 12° thoracic and 5° lumbar while Lateral deviation improved from 22,4 mm to 4,6 mm and average surface rotation improved from 10,6° to 6°. In the X-rays a reduction of decompensation was visible. The patient felt comfortable with the cosmetic result. CONCLUSION: Conservative treatment may improve cosmetic appearance while the curve progresses radiologically. This could be explained by assuming that (1) the Rigo Chêneau brace is able to improve cosmetic appearance by changing the shape of the thorax when the curve itself is too stiff to be corrected by a brace, that (2) reduction of decompensation leads to significant cosmetical improvements or (3) that the patient gained weight and therefore the deformation is masked. However, the weight the patient gained cannot explain the cosmetical improvement in this case. Conservative treatment with a certain standard of quality seems a viable alternative for patients with Cobb angles of > 60° when surgical treatment is refused. Specialists in scoliosis management should be aware of the fact that curve progression can occur even if the clinical measurements show an improvement
Universality of the Lyapunov regime for the Loschmidt echo
The Loschmidt echo (LE) is a magnitude that measures the sensitivity of
quantum dynamics to perturbations in the Hamiltonian. For a certain regime of
the parameters, the LE decays exponentially with a rate given by the Lyapunov
exponent of the underlying classically chaotic system. We develop a
semiclassical theory, supported by numerical results in a Lorentz gas model,
which allows us to establish and characterize the universality of this Lyapunov
regime. In particular, the universality is evidenced by the semiclassical limit
of the Fermi wavelength going to zero, the behavior for times longer than
Ehrenfest time, the insensitivity with respect to the form of the perturbation
and the behavior of individual (non-averaged) initial conditions. Finally, by
elaborating a semiclassical approximation to the Wigner function, we are able
to distinguish between classical and quantum origin for the different terms of
the LE. This approach renders an understanding for the persistence of the
Lyapunov regime after the Ehrenfest time, as well as a reinterpretation of our
results in terms of the quantum--classical transition.Comment: 33 pages, 17 figures, uses Revtex
Dicke Effect in the Tunnel Current through two Double Quantum Dots
We calculate the stationary current through two double quantum dots which are
interacting via a common phonon environment. Numerical and analytical solutions
of a master equation in the stationary limit show that the current can be
increased as well as decreased due to a dissipation mediated interaction. This
effect is closely related to collective, spontaneous emission of phonons (Dicke
super- and subradiance effect), and the generation of a `cross-coherence' with
entanglement of charges in singlet or triplet states between the dots.
Furthermore, we discuss an inelastic `current switch' mechanism by which one
double dot controls the current of the other.Comment: 12 pages, 6 figures, to appear in Phys. Rev.
Quantum trajectories for Brownian motion
We present the stochastic Schroedinger equation for the dynamics of a quantum
particle coupled to a high temperature environment and apply it the dynamics of
a driven, damped, nonlinear quantum oscillator. Apart from an initial slip on
the environmental memory time scale, in the mean, our result recovers the
solution of the known non-Lindblad quantum Brownian motion master equation. A
remarkable feature of our approach is its localization property: individual
quantum trajectories remain localized wave packets for all times, even for the
classically chaotic system considered here, the localization being stronger the
smaller .Comment: 4 pages, 3 eps figure
Graphene transistors are insensitive to pH changes in solution
We observe very small gate-voltage shifts in the transfer characteristic of
as-prepared graphene field-effect transistors (GFETs) when the pH of the buffer
is changed. This observation is in strong contrast to Si-based ion-sensitive
FETs. The low gate-shift of a GFET can be further reduced if the graphene
surface is covered with a hydrophobic fluorobenzene layer. If a thin Al-oxide
layer is applied instead, the opposite happens. This suggests that clean
graphene does not sense the chemical potential of protons. A GFET can therefore
be used as a reference electrode in an aqueous electrolyte. Our finding sheds
light on the large variety of pH-induced gate shifts that have been published
for GFETs in the recent literature
Patient-reported outcome after rheumatoid arthritis-related surgery in the lower extremities: A report from the Swedish National Register of Rheuma Surgery (RAKIR)
Background and purpose Although decreasing with the development of effective pharmacological regimes, joint surgery has improved the function and quality of life of patients with rheumatoid arthritis (RA). Few studies have assessed patient-reported outcomes after RA surgery to the lower extremities. Here we report patient-relevant outcome after RA-related surgery based on the first data from the Swedish National Register of Rheuma Surgery (RAKIR). Patients and methods 258 RA patients (212 women) who had joint surgery performed at the Department of Orthopaedics, Spenshult Hospital between September 2007 and June 2009 were included. Mean age at surgery was 64 (20-86) years. The patients completed the SF-36 and HAQ questionnaires preoperatively and 6 months postoperatively, and 165 patients completed them after 12 months. Results Improvement was seen as early as at 6 months. At 12 months, 165 patients (141 women)-including hip (n = 15), knee (n = 27), foot (n = 102), and ankle (n = 21) patients-reported statistically significant improvements from preoperatively to 12 months postoperatively in HAQ (mean change: -0.11) and SF-36 subscales physical function (11), role physical (12), bodily pain (13), social functioning (6.4), and role emotional (9.4). Hip and knee patients reported the greatest improvements. Interpretation Orthopedic RA-related surgery of the lower extremities has a strong effect on pain and physical function. Improvement is evident as early as 6 months postoperatively and remains after 12 months
On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory
We study the nature of the confinement phase transition in d=3+1 dimensions
in various non-abelian gauge theories with the approach put forward in [1]. We
compute an order-parameter potential associated with the Polyakov loop from the
knowledge of full 2-point correlation functions. For SU(N) with N=3,...,12 and
Sp(2) we find a first-order phase transition in agreement with general
expectations. Moreover our study suggests that the phase transition in E(7)
Yang-Mills theory also is of first order. We find that it is weaker than for
SU(N). We show that this can be understood in terms of the eigenvalue
distribution of the order parameter potential close to the phase transition.Comment: 15 page
Long-lived magnetism from solidification-driven convection on the pallasite parent body.
Palaeomagnetic measurements of meteorites suggest that, shortly after the birth of the Solar System, the molten metallic cores of many small planetary bodies convected vigorously and were capable of generating magnetic fields. Convection on these bodies is currently thought to have been thermally driven, implying that magnetic activity would have been short-lived. Here we report a time-series palaeomagnetic record derived from nanomagnetic imaging of the Imilac and Esquel pallasite meteorites, a group of meteorites consisting of centimetre-sized metallic and silicate phases. We find a history of long-lived magnetic activity on the pallasite parent body, capturing the decay and eventual shutdown of the magnetic field as core solidification completed. We demonstrate that magnetic activity driven by progressive solidification of an inner core is consistent with our measured magnetic field characteristics and cooling rates. Solidification-driven convection was probably common among small body cores, and, in contrast to thermally driven convection, will have led to a relatively late (hundreds of millions of years after accretion), long-lasting, intense and widespread epoch of magnetic activity among these bodies in the early Solar System.The research leading to these
results has received funding from the European Research Council under the European Union's
Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement No. 320750, the
European Community's Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 312284, the Natural Environment Research Council, Fundación ARAID and the
Spanish MINECO MAT2011-23791.This is the accepted manuscript. The final version is available from Nature at http://www.nature.com/nature/journal/v517/n7535/full/nature14114.html
- …