19 research outputs found

    Probabilistic fire spread forecast as a management tool in an operational setting

    Get PDF
    Background: An approach to predict fire growth in an operational setting, with the potential to be used as a decision-support tool for fire management, is described and evaluated. The operational use of fire behaviour models has mostly followed a deterministic approach, however, the uncertainty associated with model predictions needs to be quantified and included in wildfire planning and decision-making process during fire suppression activities. We use FARSITE to simulate the growth of a large wildfire. Probabilistic simulations of fire spread are performed, accounting for the uncertainty of some model inputs and parameters. Deterministic simulations were performed for comparison. We also assess the degree to which fire spread modelling and satellite active fire data can be combined, to forecast fire spread during large wildfires events. Results: Uncertainty was propagated through the FARSITE fire spread modelling system by randomly defining 100 different combinations of the independent input variables and parameters, and running the correspondent fire spread simulations in order to produce fire spread probability maps. Simulations were initialized with the reported ignition location and with satellite active fires. The probabilistic fire spread predictions show great potential to be used as a fire management tool in an operational setting, providing valuable information regarding the spatial–temporal distribution of burn probabilities. The advantage of probabilistic over deterministic simulations is clear when both are compared. Re-initializing simulations with satellite active fires did not improve simulations as expected. Conclusion: This information can be useful to anticipate the growth of wildfires through the landscape with an associated probability of occurrence. The additional information regarding when, where and with what probability the fire might be in the next few hours can ultimately help minimize the negative environmental, social and economic impacts of these firesinfo:eu-repo/semantics/publishedVersio

    Remote detection of invasive alien species

    Get PDF
    The spread of invasive alien species (IAS) is recognized as the most severe threat to biodiversity outside of climate change and anthropogenic habitat destruction. IAS negatively impact ecosystems, local economies, and residents. They are especially problematic because once established, they give rise to positive feedbacks, increasing the likelihood of further invasions and spread. The integration of remote sensing (RS) to the study of invasion, in addition to contributing to our understanding of invasion processes and impacts to biodiversity, has enabled managers to monitor invasions and predict the spread of IAS, thus supporting biodiversity conservation and management action. This chapter focuses on RS capabilities to detect and monitor invasive plant species across terrestrial, riparian, aquatic, and human-modified ecosystems. All of these environments have unique species assemblages and their own optimal methodology for effective detection and mapping, which we discuss in detail

    Organ donation after fatal poisoning

    No full text

    Propofol for refractory status epilepticus

    No full text

    Fatal Capnocytophaga-canimorsus Septicemia in a Previously Healthy Woman

    No full text
    A previously healthy 47-year-old woman presented to the emergency department with septic shock five days after a small dog bite on the dorsum of her hand. Capnocytophaga canimorsus was isolated from blood cultures. Despite intensive therapy multiple organ failure developed, and the patient died 27 days after admission. Characteristics of Capnocytophaga (formerly CDC group Dysgonic Fermenter-2) infection are briefly discussed. This unusual outcome in a previously healthy patient and the need for careful management of dog bite wounds, even if initially very small, is emphasized
    corecore