289 research outputs found

    The NRPD1 N-terminus contains a Pol IV-specific motif that is critical for genome surveillance in Arabidopsis

    Get PDF
    RNA-guided surveillance systems constrain the activity of transposable elements (TEs) in host genomes. In plants, RNA polymerase IV (Pol IV) transcribes TEs into primary transcripts from which RDR2 synthesizes double-stranded RNA precursors for small interfering RNAs (siRNAs) that guide TE methylation and silencing. How the core subunits of Pol IV, homologs of RNA polymerase II subunits, diverged to support siRNA biogenesis in a TE-rich, repressive chromatin context is not well understood. Here we studied the N-terminus of Pol IV’s largest subunit, NRPD1. Arabidopsis lines harboring missense mutations in this N-terminus produce wild-type (WT) levels of NRPD1, which co-purifies with other Pol IV subunits and RDR2. Our in vitro transcription and genomic analyses reveal that the NRPD1 N-terminus is critical for robust Pol IV-dependent transcription, siRNA production and DNA methylation. However, residual RNA-directed DNA methylation observed in one mutant genotype indicates that Pol IV can operate uncoupled from the high siRNA levels typically observed in WT plants. This mutation disrupts a motif uniquely conserved in Pol IV, crippling the enzyme's ability to inhibit retrotransposon mobilization. We propose that the NRPD1 N-terminus motif evolved to regulate Pol IV function in genome surveillance

    Fish assemblage change following the structural restoration of a degraded stream

    Get PDF
    Decades of anthropogenic pressure have harmed riverscapes throughout North America by degrading habitats and water quality and can result in the extirpation of sensitive aquatic taxa. Local stream restoration projects have increased in frequency, but monitoring is still infrequent. In 2010, Kickapoo Creek in East Central Illinois was subjected to a stream restoration project that included implementation of artificial riffles, riprap, scouring keys, and riparian vegetation. We monitored the restoration efforts for 6years after the restoration through annual sampling efforts at restored and reference sites to determine changes in habitat and fish assemblage using standard habitat sampling and electrofishing techniques. We observed distinct temporal and spatial shifts in physico-chemical parameters along with changes in fish community structure. Although biotic integrity remained moderately low in reference assemblages, restored reaches showed 3-year delay in response to restoration, with biotic integrity positively linked to additional instream habitat and altered channel morphology. Larger substrate sizes, submerged terrestrial vegetation, and newly formed scour pools along with reduced siltation were found in the restored sites, in contrast to the reference sites. These changes resulted in increased species diversity, reduced number of opportunistic species and consequently an overall increase in health of fish communities. We also observed recruitment of habitat specialists and increase in species with reproductive strategies that rely on complex substrates. The results of this study highlight some of the complex dynamics driving reach-scale restoration projects. We demonstrate the usefulness of structural restoration as a management tool to increase biotic integrity through long-term alteration of critical habitat. The delay in the response of species to the restoration efforts emphasizes the need for long-term continuous temporal and spatial monitoring

    Differences in environmental stress response between yeasts is consistent with species-specific lifestyles

    Get PDF
    Defining how organisms respond to environmental change has always been an important step toward understating their adaptive capacity and physiology. Variation in transcription during stress has been widely described in model species, especially in the yeastSaccharomyces cerevisiae, which helped to shape general rules regarding how cells cope with environmental constraints as well as decipher the functions of many genes. Now, comparison of the environmental stress response (ESR) across species is essential to obtain a better insight into the common and species-specific features of stress defense. In this context, we explored the transcriptional landscape of the yeastLachancea kluyveri(formerlySaccharomyces kluyveri) in response to diverse stresses, using RNA-seq. We investigated variation in gene expression and observed a link between genetic plasticity and environmental sensitivity. We identified the ESR genes in this species and compared them to those already found inS. cerevisiae We observed common features between the two species as well as divergence in the regulatory networks involved. Interestingly, some changes were related to differences in species lifestyle. Thus, we were able to decipher how adaptation to stress has evolved among different yeast species. Finally, by analyzing patterns of coexpression, we were able to propose potential biological functions for 42% of genes and furthermore annotate 301 genes for which no function could be assigned by homology. This large dataset allowed for the characterization of the evolution of gene regulation and provides an efficient tool to assess gene function

    Sources of Nonnative Centrarchids in the Upper Colorado River Revealed by Stable Isotope and Microchemical Analyses of Otoliths

    Get PDF
    Nonnative fishes represent a significant impediment to the recovery of imperiled fishes, including those endemic to the Colorado River in the southwestern United States. Efforts to control nonindigenous fish abundance in the upper Colorado River basin have been unsuccessful owing in part to lack of knowledge regarding nonnative fish recruitment sources. We determined the source habitat (floodplain pond versus riverine habitats) for nonnative centrarchid fishes (largemouth bass Micropterus salmoides, green sunfish Lepomis cyanellus, bluegill L. macrochirus, and black crappie Pomoxis nigromaculatus) in the upper Colorado River using stable hydrogen isotopic composition (δD) and strontium:calcium (Sr:Ca) ratios in fish otoliths as natural markers of environmental history. Stable hydrogen isotope analysis revealed that 59% of centrarchids exhibited the otolith core signatures expected for riverine-origin fish, while 22% had emigrated from floodplain ponds and 19% were of uncertain origin. Strontium:calcium ratio data were consistent with the δD assays and indicated that relatively few fish immigrated to the river from high-salinity habitats. Black crappie was the only species that originated primarily from floodplain ponds. Efforts to control the abundance of most of the fishes included in this study should be concentrated in riverine habitats given the hydrologic conditions (below-average river discharge) present during our study. However, the proportion of pond-origin fish increased with fish age, which, coupled with historical river discharge data, suggested that floodplain pond contributions to riverine nonnative fish populations fluctuate with the interannual variations in flow regime and river–pond connectivity. Our results are the first to demonstrate the utility of δD as a natural marker of fish environmental history that will probably provide valuable insights into the management of fish in other environments

    Growth Rate Responses of Missouri and Lower Yellowstone River Fishes to a Latitudinal Gradient

    Get PDF
    Notropis atherinoides, freshwater drums Aplodinotus grunniens, river carpsuckers Carpiodes carpio and saugers Stizostedion canadense collected in 1996-1998 from nine river sections of the Missouri and lower Yellowstone rivers at two life-stages (young-of-the-year and age 1+ years) were significantly different among sections. However, they showed no river-wide latitudinal trend except for age 1+ years emerald shiners that did show a weak negative relation between growth and both latitude and length of growing season. The results suggest growth rates of fishes along the Missouri River system are complex and could be of significance in the management and conservation of fish communities in this altered system

    Habitat Associations of Fish Species of Greatest Conservation Need at Multiple Spatial Scales in Wadeable Iowa Streams

    Get PDF
    Fish and habitat data were collected from 84 wadeable stream reaches in the Mississippi River drainage of Iowa to predict the occurrences of seven fish species of greatest conservation need and to identify the relative importance of habitat variables measured at small (e.g., depth, velocity, and substrate) and large (e.g., stream order, elevation, and gradient) scales in terms of their influence on species occurrences. Multiple logistic regression analysis was used to predict fish species occurrences, starting with all possible combinations of variables (5 large-scale variables, 13 small-scale variables, and all 18 variables) but limiting the final models to a maximum of five variables. Akaike’s information criterion was used to rank candidate models, weight model parameters, and calculate model-averaged predictions. On average, the correct classification rate (CCR = 80%) and Cohen’s kappa (κ = 0.59) were greatest for multiple-scale models (i.e., those including both large-scale and small-scale variables), intermediate for small-scale models (CCR = 75%; κ = 0.49), and lowest for large-scale models (CCR = 73%; κ = 0.44). The occurrence of each species was associated with a unique combination of large-scale and small-scale variables. Our results support the necessity of understanding factors that constrain the distribution of fishes across spatial scales to ensure that management decisions and actions occur at the appropriate scale

    Habitat, Fish Species, and Fish Assemblage Associations of the Topeka Shiner in West-Central Iowa

    Get PDF
    Our goal was to identify habitat, fish species, and fish assemblages associated with the occurrence of Topeka Shiners Notropis topeka in stream and off-channel habitat (OCH) of west-central Iowa. Fish assemblages and habitat characteristics were estimated in 67 stream and 27OCHsites during 2010–2011. Topeka Shiners were sampled in 52% of OCH sites, but in only 9% of stream sites, which supports the hypothesis that OCH is an important component of their life history. Fish assemblages containing Topeka Shiners were different from those that did not contain Topeka Shiners in OCH sites, but this was not evident in stream sites. Results from logistic regression models suggested that Topeka Shiner presence was associated with increased submerged vegetation and abundance of Fathead Minnow Pimephales promelas. Contrary to the findings of other studies, the abundance of large piscivorous fishes was not associated with the occurrence of Topeka Shiners. Our results provide new information about the biology and life history of the Topeka Shiner that will guide habitat restoration and other recovery efforts

    Growth, Fecundity, and Diets of Newly Established Silver Carp in the Middle Mississippi River

    Get PDF
    The silver carp Hypophthalmichthys molitrix has spread throughout the Mississippi River drainage. During 2003, we determined its population status and potential impact in the middle Mississippi River (MMR), the conduit between the lower Mississippi River and the upper Mississippi, Missouri, and Illinois rivers. We quantified growth, age structure, fecundity, and diets of silver carp sampled with trammel nets and AC electrofishing in main-channel areas. Mean length at age in the MMR exceeded that of populations in Asia by as much as 26%. Individuals were typically more than 1 year old and 230 mm total length, suggesting that small, young fish were absent. Individuals in this population matured earlier (age 2) than in the species\u27 native range. Regardless of phytoplankton variation (using chlorophyll a as a surrogate) and zooplankton concentration at MMR sites, phytoplankton was consistently most abundant in diets. Silver carp are finding suitable resources within the MMR, allowing individuals to grow rapidly during early life, persist as adults, and successfully disperse upstream

    Cross-Sample Validation Provides Enhanced Proteome Coverage in Rat Vocal Fold Mucosa

    Get PDF
    The vocal fold mucosa is a biomechanically unique tissue comprised of a densely cellular epithelium, superficial to an extracellular matrix (ECM)-rich lamina propria. Such ECM-rich tissues are challenging to analyze using proteomic assays, primarily due to extensive crosslinking and glycosylation of the majority of high Mr ECM proteins. In this study, we implemented an LC-MS/MS-based strategy to characterize the rat vocal fold mucosa proteome. Our sample preparation protocol successfully solubilized both proteins and certain high Mr glycoconjugates and resulted in the identification of hundreds of mucosal proteins. A straightforward approach to the treatment of protein identifications attributed to single peptide hits allowed the retention of potentially important low abundance identifications (validated by a cross-sample match and de novo interpretation of relevant spectra) while still eliminating potentially spurious identifications (global single peptide hits with no cross-sample match). The resulting vocal fold mucosa proteome was characterized by a wide range of cellular and extracellular proteins spanning 12 functional categories
    corecore