53 research outputs found

    Application of BRET to monitor ligand binding to GPCRs

    Get PDF
    Bioluminescence resonance energy transfer (BRET) is a well-established method for investigating protein-protein interactions. Here we present a BRET approach to monitor ligand binding to G protein–coupled receptors (GPCRs) on the surface of living cells made possible by the use of fluorescent ligands in combination with a bioluminescent protein (NanoLuc) that can be readily expressed on the N terminus of GPCRs

    Investigation of Receptor Heteromers Using NanoBRET Ligand Binding

    Get PDF
    Receptor heteromerization is the formation of a complex involving at least two different receptors with pharmacology that is distinct from that exhibited by its constituent receptor units. Detection of these complexes and monitoring their pharmacology is crucial for understanding how receptors function. The Receptor-Heteromer Investigation Technology (Receptor-HIT) utilizes liganddependent modulation of interactions between receptors and specific biomolecules for the detection and profiling of heteromer complexes. Previously, the interacting biomolecules used in ReceptorHIT assays have been intracellular proteins, however in this study we have for the first time used bioluminescence resonance energy transfer (BRET) with fluorescently-labeled ligands to investigate heteromerization of receptors on the cell surface. Using the Receptor-HIT ligand binding assay with NanoBRET, we have successfully investigated heteromers between the angiotensin II type 1 (AT1 ) receptor and the β2 adrenergic receptor (AT1-β2AR heteromer), as well as between the AT1 and angiotensin II type 2 receptor (AT1-AT2 heteromer)

    CXCL17 is an allosteric inhibitor of CXCR4 through a mechanism of action involving glycosaminoglycans

    Get PDF
    CXCL17 is a chemokine principally expressed by mucosal tissues, where it facilitates chemotaxis of monocytes, dendritic cells, and macrophages and has antimicrobial properties. CXCL17 is also implicated in the pathology of inflammatory disorders and progression of several cancers, and its expression is increased during viral infections of the lung. However, the exact role of CXCL17 in health and disease requires further investigation, and there is a need for confirmed molecular targets mediating CXCL17 functional responses. Using a range of bioluminescence resonance energy transfer (BRET)–based assays, here we demonstrated that CXCL17 inhibited CXCR4-mediated signaling and ligand binding. Moreover, CXCL17 interacted with neuropillin-1, a VEGFR2 coreceptor. In addition, we found that CXCL17 only inhibited CXCR4 ligand binding in intact cells and demonstrated that this effect was mimicked by known glycosaminoglycan binders, surfen and protamine sulfate. Disruption of putative GAG binding domains in CXCL17 prevented CXCR4 binding. This indicated that CXCL17 inhibited CXCR4 by a mechanism of action that potentially required the presence of a glycosaminoglycan-containing accessory protein. Together, our results revealed that CXCL17 is an endogenous inhibitor of CXCR4 and represents the next step in our understanding of the function of CXCL17 and regulation of CXCR4 signaling

    Key determinants of selective binding and activation by the monocyte chemoattractant proteins at the chemokine receptor CCR2

    Get PDF
    Chemokines and their receptors collectively orchestrate the trafficking of leukocytes in normal immune function and inflammatory diseases. Different chemokines can induce distinct responses at the same receptor. In comparison to monocyte chemoattractant protein-1 (MCP-1; also known as CCL2), the chemokines MCP-2 (CCL8) and MCP-3 (CCL7) are partial agonists of their shared receptor CCR2, a key regulator of the trafficking of monocytes and macrophages that contribute to the pathology of atherosclerosis, obesity, and type 2 diabetes. Through experiments with chimeras of MCP-1 and MCP-3, we identified the chemokine amino-terminal region as being the primary determinant of both the binding and signaling selectivity of these two chemokines at CCR2. Analysis of CCR2 mutants showed that the chemokine amino terminus interacts with the major subpocket in the transmembrane helical bundle of CCR2, which is distinct fromthe interactions of some other chemokines with the minor subpockets of their receptors. These results suggest the major subpocket as a target for the development of small-molecule inhibitors of CCR2. 2017 © The Authors

    The oncogene AAMDC links PI3K-AKT-mTOR signaling with metabolic reprograming in estrogen receptor-positive breast cancer

    Get PDF
    Adipogenesis associated Mth938 domain containing (AAMDC) represents an uncharacterized oncogene amplified in aggressive estrogen receptor-positive breast cancers. We uncover that AAMDC regulates the expression of several metabolic enzymes involved in the one-carbon folate and methionine cycles, and lipid metabolism. We show that AAMDC controls PI3K-AKT-mTOR signaling, regulating the translation of ATF4 and MYC and modulating the transcriptional activity of AAMDC-dependent promoters. High AAMDC expression is associated with sensitization to dactolisib and everolimus, and these PI3K-mTOR inhibitors exhibit synergistic interactions with anti-estrogens in IntClust2 models. Ectopic AAMDC expression is sufficient to activate AKT signaling, resulting in estrogen-independent tumor growth. Thus, AAMDC-overexpressing tumors may be sensitive to PI3K-mTORC1 blockers in combination with anti-estrogens. Lastly, we provide evidence that AAMDC can interact with the RabGTPase-activating protein RabGAP1L, and that AAMDC, RabGAP1L, and Rab7a colocalize in endolysosomes. The discovery of the RabGAP1L-AAMDC assembly platform provides insights for the design of selective blockers to target malignancies having the AAMDC amplification

    The Onconeural Antigen cdr2 Is a Novel APC/C Target that Acts in Mitosis to Regulate C-Myc Target Genes in Mammalian Tumor Cells

    Get PDF
    Cdr2 is a tumor antigen expressed in a high percentage of breast and ovarian tumors and is the target of a naturally occurring tumor immune response in patients with paraneoplastic cerebellar degeneration, but little is known of its regulation or function in cancer cells. Here we find that cdr2 is cell cycle regulated in tumor cells with protein levels peaking in mitosis. As cells exit mitosis, cdr2 is ubiquitinated by the anaphase promoting complex/cyclosome (APC/C) and rapidly degraded by the proteasome. Previously we showed that cdr2 binds to the oncogene c-myc, and here we extend this observation to show that cdr2 and c-myc interact to synergistically regulate c-myc-dependent transcription during passage through mitosis. Loss of cdr2 leads to functional consequences for dividing cells, as they show aberrant mitotic spindle formation and impaired proliferation. Conversely, cdr2 overexpression is able to drive cell proliferation in tumors. Together, these data indicate that the onconeural antigen cdr2 acts during mitosis in cycling cells, at least in part through interactions with c-myc, to regulate a cascade of actions that may present new targeting opportunities in gynecologic cancer

    Deleterious GRM1 Mutations in Schizophrenia

    Get PDF
    We analysed a phenotypically well-characterised sample of 450 schziophrenia patients and 605 controls for rare non-synonymous single nucleotide polymorphisms (nsSNPs) in the GRM1 gene, their functional effects and family segregation. GRM1 encodes the metabotropic glutamate receptor 1 (mGluR1), whose documented role as a modulator of neuronal signalling and synaptic plasticity makes it a plausible schizophrenia candidate. In a recent study, this gene was shown to harbour a cluster of deleterious nsSNPs within a functionally important domain of the receptor, in patients with schizophrenia and bipolar disorder. Our Sanger sequencing of the GRM1 coding regions detected equal numbers of nsSNPs in cases and controls, however the two groups differed in terms of the potential effects of the variants on receptor function: 6/6 case-specific and only 1/6 control-specific nsSNPs were predicted to be deleterious. Our in-vitro experimental follow-up of the case-specific mutants showed that 4/6 led to significantly reduced inositol phosphate production, indicating impaired function of the major mGluR1signalling pathway; 1/6 had reduced cell membrane expression; inconclusive results were obtained in 1/6. Family segregation analysis indicated that these deleterious nsSNPs were inherited. Interestingly, four of the families were affected by multiple neuropsychiatric conditions, not limited to schizophrenia, and the mutations were detected in relatives with schizophrenia, depression and anxiety, drug and alcohol dependence, and epilepsy. Our findings suggest a possible mGluR1 contribution to diverse psychiatric conditions, supporting the modulatory role of the receptor in such conditions as proposed previously on the basis of in vitro experiments and animal studies

    Investigation of interactions between TLR2, MyD88 and TIRAP by bioluminescence resonance energy transfer is hampered by artefacts of protein overexpression.

    Get PDF
    Toll like receptors (TLRs) are important pattern recognition receptors that can detect pathogen and danger associated molecular patterns to initiate an innate immune response. TLR1 and 2 heterodimerize at the plasma membrane upon binding to triacylated lipopeptides from bacterial cell walls, or to the synthetic ligand Pam3CSK4. TLR1/2 dimers interact with adaptor molecules TIRAP and MyD88 to initiate a signalling cascade that leads to activation of key transcription factors, including NF-kB. Despite TLRs being extensively studied over the last two decades, the real-time kinetics of ligand binding and receptor activation remains largely unexplored. We aimed to study the kinetics of TLR activation and recruitment of adaptors, using TLR1/2 dimer interactions with adaptors MyD88 and TIRAP. Bioluminescence resonance energy transfer (BRET) allows detection of real-time protein-protein interactions in living cells, and was applied to study adaptor recruitment to TLRs. Energy transfer showed interactions between TLR2 and TIRAP, and between TLR2 and MyD88 only in the presence of TIRAP. Quantitative BRET and confocal microscopy confirmed that TIRAP is necessary for MyD88 interaction with TLR2. Furthermore, constitutive proximity between the proteins in the absence of Pam3CSK4 stimulation was observed with BRET, and was not abrogated with lowered protein expression, changes in protein tagging strategies, or use of the brighter NanoLuc luciferase. However, co-immunoprecipitation studies did not demonstrate constitutive interaction between these proteins, suggesting that the interaction observed with BRET likely represents artefacts of protein overexpression. Thus, caution should be taken when utilizing protein overexpression in BRET studies and in investigations of the TLR pathway

    Quantitative Forster resonance energy transfer efficiency measurements using simultaneous spectral unmixing of excitation and emission spectra

    No full text
    Accurate quantification of Förster resonance energy transfer (FRET) using intensity-based methods is difficult due to the overlap of fluorophore excitation and emission spectra. Consequently, mechanisms are required to remove bleedthrough of the donor e
    • …
    corecore