5,478 research outputs found
Capacity-achieving ensembles for the binary erasure channel with bounded complexity
We present two sequences of ensembles of non-systematic irregular
repeat-accumulate codes which asymptotically (as their block length tends to
infinity) achieve capacity on the binary erasure channel (BEC) with bounded
complexity per information bit. This is in contrast to all previous
constructions of capacity-achieving sequences of ensembles whose complexity
grows at least like the log of the inverse of the gap (in rate) to capacity.
The new bounded complexity result is achieved by puncturing bits, and allowing
in this way a sufficient number of state nodes in the Tanner graph representing
the codes. We also derive an information-theoretic lower bound on the decoding
complexity of randomly punctured codes on graphs. The bound holds for every
memoryless binary-input output-symmetric channel and is refined for the BEC.Comment: 47 pages, 9 figures. Submitted to IEEE Transactions on Information
Theor
HITECH Revisited
Assesses the 2009 Health Information Technology for Economic and Clinical Health Act, which offers incentives to adopt and meaningfully use electronic health records. Recommendations include revised criteria, incremental approaches, and targeted policies
A Rate-Distortion Exponent Approach to Multiple Decoding Attempts for Reed-Solomon Codes
Algorithms based on multiple decoding attempts of Reed-Solomon (RS) codes
have recently attracted new attention. Choosing decoding candidates based on
rate-distortion (R-D) theory, as proposed previously by the authors, currently
provides the best performance-versus-complexity trade-off. In this paper, an
analysis based on the rate-distortion exponent (RDE) is used to directly
minimize the exponential decay rate of the error probability. This enables
rigorous bounds on the error probability for finite-length RS codes and leads
to modest performance gains. As a byproduct, a numerical method is derived that
computes the rate-distortion exponent for independent non-identical sources.
Analytical results are given for errors/erasures decoding.Comment: accepted for presentation at 2010 IEEE International Symposium on
Information Theory (ISIT 2010), Austin TX, US
On Multiple Decoding Attempts for Reed-Solomon Codes: A Rate-Distortion Approach
One popular approach to soft-decision decoding of Reed-Solomon (RS) codes is
based on using multiple trials of a simple RS decoding algorithm in combination
with erasing or flipping a set of symbols or bits in each trial. This paper
presents a framework based on rate-distortion (RD) theory to analyze these
multiple-decoding algorithms. By defining an appropriate distortion measure
between an error pattern and an erasure pattern, the successful decoding
condition, for a single errors-and-erasures decoding trial, becomes equivalent
to distortion being less than a fixed threshold. Finding the best set of
erasure patterns also turns into a covering problem which can be solved
asymptotically by rate-distortion theory. Thus, the proposed approach can be
used to understand the asymptotic performance-versus-complexity trade-off of
multiple errors-and-erasures decoding of RS codes.
This initial result is also extended a few directions. The rate-distortion
exponent (RDE) is computed to give more precise results for moderate
blocklengths. Multiple trials of algebraic soft-decision (ASD) decoding are
analyzed using this framework. Analytical and numerical computations of the RD
and RDE functions are also presented. Finally, simulation results show that
sets of erasure patterns designed using the proposed methods outperform other
algorithms with the same number of decoding trials.Comment: to appear in the IEEE Transactions on Information Theory (Special
Issue on Facets of Coding Theory: from Algorithms to Networks
Approaching Capacity at High-Rates with Iterative Hard-Decision Decoding
A variety of low-density parity-check (LDPC) ensembles have now been observed
to approach capacity with message-passing decoding. However, all of them use
soft (i.e., non-binary) messages and a posteriori probability (APP) decoding of
their component codes. In this paper, we show that one can approach capacity at
high rates using iterative hard-decision decoding (HDD) of generalized product
codes. Specifically, a class of spatially-coupled GLDPC codes with BCH
component codes is considered, and it is observed that, in the high-rate
regime, they can approach capacity under the proposed iterative HDD. These
codes can be seen as generalized product codes and are closely related to
braided block codes. An iterative HDD algorithm is proposed that enables one to
analyze the performance of these codes via density evolution (DE).Comment: 22 pages, this version accepted to the IEEE Transactions on
Information Theor
Bright tripartite entanglement in triply concurrent parametric oscillation
We show that a novel optical parametric oscillator, based on concurrent
nonlinearities, can produce, above threshold, bright output beams
of macroscopic intensities which exhibit strong tripartite continuous-variable
entanglement. We also show that there are {\em two} ways that the system can
exhibit a new three-mode form of the Einstein-Podolsky-Rosen paradox, and
calculate the extra-cavity fluctuation spectra that may be measured to verify
our predictions.Comment: title change, expanded intro and discussion of experimental aspects,
1 new figure. Conclusions unaltere
On the Queueing Behavior of Random Codes over a Gilbert-Elliot Erasure Channel
This paper considers the queueing performance of a system that transmits
coded data over a time-varying erasure channel. In our model, the queue length
and channel state together form a Markov chain that depends on the system
parameters. This gives a framework that allows a rigorous analysis of the queue
as a function of the code rate. Most prior work in this area either ignores
block-length (e.g., fluid models) or assumes error-free communication using
finite codes. This work enables one to determine when such assumptions provide
good, or bad, approximations of true behavior. Moreover, it offers a new
approach to optimize parameters and evaluate performance. This can be valuable
for delay-sensitive systems that employ short block lengths.Comment: 5 pages, 4 figures, conferenc
- …