research

A Rate-Distortion Exponent Approach to Multiple Decoding Attempts for Reed-Solomon Codes

Abstract

Algorithms based on multiple decoding attempts of Reed-Solomon (RS) codes have recently attracted new attention. Choosing decoding candidates based on rate-distortion (R-D) theory, as proposed previously by the authors, currently provides the best performance-versus-complexity trade-off. In this paper, an analysis based on the rate-distortion exponent (RDE) is used to directly minimize the exponential decay rate of the error probability. This enables rigorous bounds on the error probability for finite-length RS codes and leads to modest performance gains. As a byproduct, a numerical method is derived that computes the rate-distortion exponent for independent non-identical sources. Analytical results are given for errors/erasures decoding.Comment: accepted for presentation at 2010 IEEE International Symposium on Information Theory (ISIT 2010), Austin TX, US

    Similar works

    Full text

    thumbnail-image

    Available Versions