45 research outputs found

    Translation-invariance of two-dimensional Gibbsian point processes

    Full text link
    The conservation of translation as a symmetry in two-dimensional systems with interaction is a classical subject of statistical mechanics. Here we establish such a result for Gibbsian particle systems with two-body interaction, where the interesting cases of singular, hard-core and discontinuous interaction are included. We start with the special case of pure hard core repulsion in order to show how to treat hard cores in general.Comment: 44 pages, 6 figure

    On the convergence of cluster expansions for polymer gases

    Full text link
    We compare the different convergence criteria available for cluster expansions of polymer gases subjected to hard-core exclusions, with emphasis on polymers defined as finite subsets of a countable set (e.g. contour expansions and more generally high- and low-temperature expansions). In order of increasing strength, these criteria are: (i) Dobrushin criterion, obtained by a simple inductive argument; (ii) Gruber-Kunz criterion obtained through the use of Kirkwood-Salzburg equations, and (iii) a criterion obtained by two of us via a direct combinatorial handling of the terms of the expansion. We show that for subset polymers our sharper criterion can be proven both by a suitable adaptation of Dobrushin inductive argument and by an alternative --in fact, more elementary-- handling of the Kirkwood-Salzburg equations. In addition we show that for general abstract polymers this alternative treatment leads to the same convergence region as the inductive Dobrushin argument and, furthermore, to a systematic way to improve bounds on correlations

    Cluster expansion for abstract polymer models. New bounds from an old approach

    Full text link
    We revisit the classical approach to cluster expansions, based on tree graphs, and establish a new convergence condition that improves those by Kotecky-Preiss and Dobrushin, as we show in some examples. The two ingredients of our approach are: (i) a careful consideration of the Penrose identity for truncated functions, and (ii) the use of iterated transformations to bound tree-graph expansions.Comment: 16 pages. This new version, written en reponse to the suggestions of the referees, includes more detailed introductory sections, a proof of the generalized Penrose identity and some additional results that follow from our treatmen

    A Finite-Volume Version of Aizenman-Higuchi Theorem for the 2d Ising Model

    Full text link
    In the late 1970s, in two celebrated papers, Aizenman and Higuchi independently established that all infinite-volume Gibbs measures of the two-dimensional ferromagnetic nearest-neighbor Ising model are convex combinations of the two pure phases. We present here a new approach to this result, with a number of advantages: (i) We obtain an optimal finite-volume, quantitative analogue (implying the classical claim); (ii) the scheme of our proof seems more natural and provides a better picture of the underlying phenomenon; (iii) this new approach might be applicable to systems for which the classical method fails.Comment: A couple of typos corrected. To appear in Probab. Theory Relat. Field

    Ordering and Demixing Transitions in Multicomponent Widom-Rowlinson Models

    Full text link
    We use Monte Carlo techniques and analytical methods to study the phase diagram of multicomponent Widom-Rowlinson models on a square lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. Simulations show that for M between two and six there is a direct transition from the gas phase at z < z_d (M) to a demixed phase consisting mostly of one species at z > z_d (M) while for M \geq 7 there is an intermediate ``crystal phase'' for z lying between z_c(M) and z_d(M). In this phase, which is driven by entropy, particles, independent of species, preferentially occupy one of the sublattices, i.e. spatial symmetry but not particle symmetry is broken. The transition at z_d(M) appears to be first order for M \geq 5 putting it in the Potts model universality class. For large M the transition between the crystalline and demixed phase at z_d(M) can be proven to be first order with z_d(M) \sim M-2 + 1/M + ..., while z_c(M) is argued to behave as \mu_{cr}/M, with \mu_{cr} the value of the fugacity at which the one component hard square lattice gas has a transition, and to be always of the Ising type. Explicit calculations for the Bethe lattice with the coordination number q=4 give results similar to those for the square lattice except that the transition at z_d(M) becomes first order at M>2. This happens for all q, consistent with the model being in the Potts universality class.Comment: 26 pages, 15 postscript figure

    Optimal designs for rational function regression

    Full text link
    We consider optimal non-sequential designs for a large class of (linear and nonlinear) regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. The proposed method treats D-, E-, A-, and Φp\Phi_p-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well established numerical optimization methods. In contrast to previous optimization-based methods proposed for similar design problems, it also has theoretical guarantee of its algorithmic efficiency; in fact, the running times of all numerical examples considered in the paper are negligible. The stability of the method is demonstrated in an example involving high degree polynomials. After discussing linear models, applications for finding locally optimal designs for nonlinear regression models involving rational functions are presented, then extensions to robust regression designs, and trigonometric regression are shown. As a corollary, an upper bound on the size of the support set of the minimally-supported optimal designs is also found. The method is of considerable practical importance, with the potential for instance to impact design software development. Further study of the optimality conditions of the main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory and additional example

    Borrelioses, agentes e vetores

    Full text link
    corecore