2,561 research outputs found

    Master\u27s Liability for the Tort of His Servant\u27s Assistant

    Get PDF

    Tuning the Clock: Uranium and Thorium Chronometers Applied to CS 31082-001

    Get PDF
    We obtain age estimates for the progenitor(s) of the extremely metal-poor ([Fe/H = -2.9) halo star CS 31082-001, based on the recently reported first observation of a Uranium abundance in this (or any other) star. Age estimates are derived by application of the classical r-process model with updated nuclear physics inputs. The [U/Th] ratio yields an age of 13+-4 Gyr or 8+-4 Gyr, based on the use of the ETFSI-Q or the new HFBCS-1 nuclear mass models, respectively. Implications for Thorium chronometers are discussed.Comment: 5 pages incl. 1 figure, a shorter 3 page version will be published in the proceedings of the "Astrophysical Ages and Timescales" conference held in Hilo, Hawaii, Feb 5-9, 200

    Aglite: A 3-Wavelength Lidar System for Quantitative Assessment of Agricultural Air Quality and Whole Facility Emissions

    Get PDF
    Ground based remote sensing technologies such as scanning lidar systems (light detection and ranging) are increasingly being used to characterize ambient aerosols due to key advantages (i.e., wide area of regard (10 km2), fast response time (s-1), high spatial resolution (\u3c10 \u3em) and high sensitivity). Scanning lidar allows for 3D imaging of atmospheric motion and aerosol variability, which can be used to quantitatively evaluate particulate matter (PM) concentrations and emissions. Space Dynamics Laboratory, in conjunction with USDA ARS, has developed and successfully deployed a lidar system called Aglite to characterize PM in diverse settings. Aglite is a portable scanning elastic lidar system with three wavelengths (355, 532, and 1064 nm), 6 m long range bins, and an effective range from 0.5 to 15 km. Filter-based PM samplers, optical particle counters, and various meteorological instruments were deployed to provide environmental and PM conditions for use in the lidar retrieval method. The developed retrieval algorithm extracts aerosol optical parameters, which were constrained by the point measurements, and converts return signals to PM concentrations. Once calibrated, the Aglite system can map the spatial distribution and temporal variation of the PM concentrations. Whole facility or operation-based emission rates were calculated from the lidar PM data with a mass balance approach. Concentration comparisons with upwind and downwind point sensors were made to verify data quality; lidar-derived PM levels were usually in good agreement with point sensor measurements. Comparisons of lidar-based emissions with emissions estimated through other methods using point sensor data generally show good agreement

    Interactive Voice Response-An Innovative Approach to Post-Stroke Depression Self-Management Support

    Get PDF
    Automated interactive voice response (IVR) call systems can provide systematic monitoring and self-management support to depressed patients, but it is unknown if stroke patients are able and willing to engage in IVR interactions. We sought to assess the feasibility and acceptability of IVR as an adjunct to post-stroke depression follow-up care. The CarePartner program is a mobile health program designed to optimize depression self-management, facilitate social support from a caregiver, and strengthen connections between stroke survivors and primary care providers (PCPs). Ischemic stroke patients and an informal caregiver, if available, were recruited during the patient's acute stroke hospitalization or follow-up appointment. The CarePartner program was activated in patients with depressive symptoms during their stroke hospitalization or follow-up. The 3-month intervention consisted of weekly IVR calls monitoring both depressive symptoms and medication adherence along with tailored suggestions for depressive symptom self-management. After each completed IVR call, informal caregivers were automatically updated, and, if needed, the subject's PCP was notified. Of the 56 stroke patients who enrolled, depressive symptoms were identified in 13 (23 %) subjects. Subjects completed 74 % of the weekly IVR assessments. A total of six subjects did not complete the outcome assessment, including two non-study-related deaths. PCPs were notified five times, including two times for suicidal ideation and three times for medication non-adherence. Stroke patients with depressive symptoms were able to engage in an IVR call system. Future studies are needed to explore the efficacy of an IVR approach for post-stroke self-management and monitoring of stroke-related outcomes

    Numerical study of the strongly screened vortex glass model in an external field

    Full text link
    The vortex glass model for a disordered high-T_c superconductor in an external magnetic field is studied in the strong screening limit. With exact ground state (i.e. T=0) calculations we show that 1) the ground state of the vortex configuration varies drastically with infinitesimal variations of the strength of the external field, 2) the minimum energy of global excitation loops of length scale L do not depend on the strength of the external field, however 3) the excitation loops themself depend sensibly on the field. From 2) we infer the absence of a true superconducting state at any finite temperature independent of the external field.Comment: 6 pages RevTeX, 5 eps-figures include

    Emissions Calculated from Particulate Matter and Gaseous Ammonia Measurements from Commercial Dairy in California, USA

    Get PDF
    Emission rates and factors for particulate matter (PM) and gaseous ammonia (NH3) were estimated from measurements taken at a dairy in June 2008. Concentration measurements were made using both point and remote sensors. Filter-based PM samplers and optical particle counters (OPCs) characterized aerodynamic and optical properties, while a scanning elastic lidar measured particles around the facility. The lidar was calibrated to PM concentration using the point measurements. NH3 concentrations were measured using 23 passive samplers and 2 open-path Fourier transform infrared spectrometers (FTS). Emission rates and factors were estimated through both an inverse modeling technique using AERMOD coupled with measurements and a mass-balance approach applied to lidar PM data. Mean PM emission factors ± 95% confidence interval were 3.8 ± 3.2, 24.8 ± 14.5, and 75.9 ± 33.2 g/d/AU for PM2.5, PM10, and TSP, respectively, from inverse modeling and 1.3 ± 0.2, 15.1 ± 2.2, and 46.4 ± 7.0 g/d/AU for PM2.5, PM10, and TSP, respectively, from lidar data. Average daily NH3 emissions from the pens, liquid manure ponds, and the whole facility were 143.4 ± 162.0, 29.0 ± 74.7, and 172.4 ± 121.4 g/d/AU, respectively, based on the passive sampler data and 190.6 ± 55.8, 16.4 ± 8.4, and 207.1 ± 54.7 g/d/AU, respectively, based on FTS measurements. Liquid manure pond emissions averaged 5.4 ± 13.9 and 3.1 ± 1.6 g/m2/d based on passive sampler and FTS measurements, respectively. The calculated PM10 and NH3 emissions were of similar magnitude as those found in literature. Diurnal emission patterns were observed

    Particulate-Matter Emission Estimates from Agricultural Spring-Tillage Operations Using LIDAR and Inverse Modeling

    Get PDF
    Particulate-matter (PM) emissions from a typical spring agricultural tillage sequence and a strip–till conservation tillage sequence in California’s San Joaquin Valley were estimated to calculate the emissions control efficiency (η) of the strip–till conservation management practice (CMP). Filter-based PM samplers, PM-calibrated optical particle counters (OPCs), and a PM-calibrated light detection and ranging (LIDAR) system were used to monitored upwind and downwind PM concentrations during May and June 2008. Emission rates were estimated through inverse modeling coupled with the filter and OPC measurements and through applying a mass balance to the PM concentrations derived from LIDAR data. Sampling irregularities and errors prevented the estimation of emissions from 42% of the sample periods based on filter samples. OPC and LIDAR datasets were sufficiently complete to estimate emissions and the strip–till CMP η, which were ∌90% for all size fractions in both datasets. Tillage time was also reduced by 84%. Calculated emissions for some operations were within the range of values found in published studies, while other estimates were significantly higher than literature values. The results demonstrate that both PM emissions and tillage time may be reduced by an order of magnitude through the use of a strip–till conservation tillage CMP when compared to spring tillage activities

    The Lazarus project: A pragmatic approach to binary black hole evolutions

    Full text link
    We present a detailed description of techniques developed to combine 3D numerical simulations and, subsequently, a single black hole close-limit approximation. This method has made it possible to compute the first complete waveforms covering the post-orbital dynamics of a binary black hole system with the numerical simulation covering the essential non-linear interaction before the close limit becomes applicable for the late time dynamics. To determine when close-limit perturbation theory is applicable we apply a combination of invariant a priori estimates and a posteriori consistency checks of the robustness of our results against exchange of linear and non-linear treatments near the interface. Once the numerically modeled binary system reaches a regime that can be treated as perturbations of the Kerr spacetime, we must approximately relate the numerical coordinates to the perturbative background coordinates. We also perform a rotation of a numerically defined tetrad to asymptotically reproduce the tetrad required in the perturbative treatment. We can then produce numerical Cauchy data for the close-limit evolution in the form of the Weyl scalar ψ4\psi_4 and its time derivative ∂tψ4\partial_t\psi_4 with both objects being first order coordinate and tetrad invariant. The Teukolsky equation in Boyer-Lindquist coordinates is adopted to further continue the evolution. To illustrate the application of these techniques we evolve a single Kerr hole and compute the spurious radiation as a measure of the error of the whole procedure. We also briefly discuss the extension of the project to make use of improved full numerical evolutions and outline the approach to a full understanding of astrophysical black hole binary systems which we can now pursue.Comment: New typos found in the version appeared in PRD. (Mostly found and collected by Bernard Kelly

    An Integrated-Photonics Optical-Frequency Synthesizer

    Full text link
    Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability much beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the 7.0∗10−137.0*10^{-13} reference-clock instability for a 1 second acquisition, and constrain any synthesis error to 7.7∗10−157.7*10^{-15} while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.Comment: 10 pages, 6 figure

    Heart rate, mortality, and the relation with clinical and subclinical cardiovascular diseases: results from the Gutenberg Health Study

    Get PDF
    BACKGROUND: Higher, but also lower resting heart rate (HR), has been associated with increased cardiovascular events and mortality. Little is known about the interplay between HR, cardiovascular risk factors, concomitant diseases, vascular (endothelial) function, neurohormonal biomarkers, and all-cause mortality in the general population. Thus, we aimed to investigate these relationships in a population-based cohort. METHODS: 15,010 individuals (aged 35-74 at enrolment in 2007-2012) from the Gutenberg Health Study were analyzed. Multivariable regression modeling was used to assess the relation between the variables and conditional density plots were generated for cardiovascular risk factors, diseases, and mortality to show their dependence on HR. RESULTS: There were 714 deaths in the total sample at 7.67 +/- 1.68 years of follow-up. The prevalence of diabetes mellitus, arterial hypertension, coronary and peripheral artery disease, chronic heart failure, and previous myocardial infarction exhibited a J-shaped association with HR. Mortality showed a similar relation with a nadir of 64 beats per minute (bpm) in the total sample. Each 10 bpm HR reduction in HR \u3c 64 subjects was independently associated with increased mortality (Hazard Ratio 1.36; 95% confidence interval 1.06-1.75). This increased risk was also present in HR \u3e 64 subjects (Hazard Ratio 1.29; 95% confidence interval 1.19-1.41 per 10 bpm increase in HR). Results found for vascular and neurohormonal biomarkers exhibited a differential picture in subjects with a HR below and above the nadir. DISCUSSION: These results indicate that in addition to a higher HR, a lower HR is associated with increased mortality
    • 

    corecore