52 research outputs found
Steep sulfur gradient in CZTSSe solar cells by HS-assisted rapid surface sulfurization
Sulfur/selenium grading is a widely used optimization strategy in kesterite thin-film solar cells to obtain a bandgap-graded absorber material and to optimize optical and electrical properties of the solar-cell device. In this work, we present a novel approach to introduce a [S]/([S] + [Se]) grading for CuZnSn(S,Se) solar cells. In contrast to commonly used methods with slow process dynamics, the presented approach aims to create a fast sulfurization reaction on the surface of pure selenide kesterite absorbers by using highly reactive HS gas and high sulfurization temperatures in a rapid flash-type process. With a combination of X-ray photoelectron spectroscopy, X-ray emission spectroscopy, Raman spectroscopy, and Raman-shallow angle cross sections spectroscopy, we gain depth-varied information on the [S]/([S] + [Se]) ratio and discuss the impact of different process parameter variations on the material and device properties. The results demonstrate the potential of the developed process to generate a steep gradient of sulfur that is confined mainly to the surface region of the absorber film
High-resolution XEOL spectroscopy setup at the X-ray absorption spectroscopy beamline P65 of PETRA III
A newly designed setup to perform steady-state X-ray excited optical luminescence (XEOL) spectroscopy and simultaneous XEOL and X-ray absorption spectroscopy characterization at beamline P65 of PETRA III is described. The XEOL setup is equipped with a He-flow cryostat and state-of-the-art optical detection system, which covers a wide wavelength range of 300–1700 nm with a high spectral resolution of 0.4 nm. To demonstrate the setup functioning, low-temperature XEOL studies on polycrystalline CuInSe(2) thin film, single-crystalline GaN thin film and single-crystalline ZnO bulk semiconductor samples are performed
Steep Sulfur Gradient in CZTSSe Solar Cells by H2S-Assisted Rapid Surface Sulfurization
Sulfur/selenium grading is a widely used optimization strategy in kesterite thin-film solar cells to obtain a bandgap-graded absorber material and to optimize optical and electrical properties of the solar-cell device. In this work, we present a novel approach to introduce a [S]/([S] + [Se]) grading for Cu ZnSn(S,Se) solar cells. In contrast to commonly used methods with slow process dynamics, the presented approach aims to create a fast sulfurization reaction on the surface of pure selenide kesterite absorbers by using highly reactive H S gas and high sulfurization temperatures in a rapid flash-type process. With a combination of X-ray photoelectron spectroscopy, X-ray emission spectroscopy, Raman spectroscopy, and Raman-shallow angle cross sections spectroscopy, we gain depth-varied information on the [S]/([S] + [Se]) ratio and discuss the impact of different process parameter variations on the material and device properties. The results demonstrate the potential of the developed process to generate a steep gradient of sulfur that is confined mainly to the surface region of the absorber film. 2 4
Comparison of Combustion Models for Lifted Hydrogen Flames within RANS Framework
Within the framework of a Reynolds averaged numerical simulation (RANS) methodology for modeling turbulence, a comparative numerical study of turbulent lifted H2/N2 flames is presented. Three different turbulent combustion models, namely, the eddy dissipation model (EDM), the eddy dissipation concept (EDC), and the composition probability density function (PDF) transport model, are considered in the analysis. A wide range of global and detailed combustion reaction mechanisms are investigated. As turbulence model, the Standard k-ε model is used, which delivered a comparatively good accuracy within an initial validation study, performed for a non-reacting H2/N2 jet. The predictions for the lifted H2/N2 flame are compared with the published measurements of other authors, and the relative performance of the turbulent combustion models and combustion reaction mechanisms are assessed. The flame lift-off height is taken as the measure of prediction quality. The results show that the latter depends remarkably on the reaction mechanism and the turbulent combustion model applied. It is observed that a substantially better prediction quality for the whole range of experimentally observed lift-off heights is provided by the PDF model, when applied in combination with a detailed reaction mechanism dedicated for hydrogen combustion.</jats:p
Comparison of Combustion Models for Lifted Hydrogen Flames within RANS Framework
Within the framework of a Reynolds averaged numerical simulation (RANS) methodology for modeling turbulence, a comparative numerical study of turbulent lifted H2/N2 flames is presented. Three different turbulent combustion models, namely, the eddy dissipation model (EDM), the eddy dissipation concept (EDC), and the composition probability density function (PDF) transport model, are considered in the analysis. A wide range of global and detailed combustion reaction mechanisms are investigated. As turbulence model, the Standard k-ε model is used, which delivered a comparatively good accuracy within an initial validation study, performed for a non-reacting H2/N2 jet. The predictions for the lifted H2/N2 flame are compared with the published measurements of other authors, and the relative performance of the turbulent combustion models and combustion reaction mechanisms are assessed. The flame lift-off height is taken as the measure of prediction quality. The results show that the latter depends remarkably on the reaction mechanism and the turbulent combustion model applied. It is observed that a substantially better prediction quality for the whole range of experimentally observed lift-off heights is provided by the PDF model, when applied in combination with a detailed reaction mechanism dedicated for hydrogen combustion
Prediction of burning velocity and quenching distance of hydrogen flames
Atmospheric, laminar, stoichiometric, premixed hydrogen-air flames in a diverging channel are investigated by means of Computational Fluid Dynamics. This configuration has been recently used in a series of experimental investigations to determine the burning velocities and quenching distances for premixed flames of different fuels. The purpose of the present investigation is the validation of the prediction procedures for the burning speeds and quenching distances for hydrogen flames by comparing them with these measurements. Global and detailed reaction mechanisms are applied to describe the combustion process. For assuring an adequately fine resolution of the flame fronts, adaptive grid refinement techniques are applied. A reasonable agreement is observed with the experiments, where the detailed and global mechanisms are slightly overpredicting and underpredicting the quenching distance, respectively.</jats:p
Prediction of hydrogen flame propagation in a channel with exit contraction
The propagation of a flame front in a homogeneous and initially quiescent hydrogen-air mixture in a channel with exit contraction is numerically analyzed by means of Computational Fluid Dynamics. For the given configuration, the compressibility effects are important, the average pressure increases in time due to the exit contraction, and pressure waves occur, which affect the flame propagation. Flowturbulence is modelled by the Realizable k-e model. In modelling combustion, turbulence-chemistry interactions are neglected. Predictions are compared with the measurements for evolution of the flame shape, propagation speed and pressure. It is observed that the flame propagation speed, and, thus, the rate of pressure increase are over-predicted by the present approach. Still, a fair qualitative agreementto measurements is observed.</jats:p
Prediction of hydrogen flame propagation in a channel with exit contraction
The propagation of a flame front in a homogeneous and initially quiescent hydrogen-air mixture in a channel with exit contraction is numerically analyzed by means of Computational Fluid Dynamics. For the given configuration, the compressibility effects are important, the average pressure increases in time due to the exit contraction, and pressure waves occur, which affect the flame propagation. Flowturbulence is modelled by the Realizable k-e model. In modelling combustion, turbulence-chemistry interactions are neglected. Predictions are compared with the measurements for evolution of the flame shape, propagation speed and pressure. It is observed that the flame propagation speed, and, thus, the rate of pressure increase are over-predicted by the present approach. Still, a fair qualitative agreementto measurements is observed
Validation of Combustion Models for Lifted Hydrogen Flame
Within a Reynolds Averaged Numerical Simulation (RANS) approach for turbulence modelling, a computational investigation of a turbulent lifted H2/N2flame is presented. Various turbulent combustion models are considered including the Eddy Dissipation Model (EDM), the Eddy Dissipation Concept (EDC), and the composition Probability Density Function transport model (PDF) in combination with different detailed and global reaction mechanisms. Turbulence is modelled using the Standard k-ɛ model, which has proven to offer a good accuracy, based on a preceding validation study for an isothermal H2/N2jet. Results are compared with the published measurements for a lifted H2/N2flame, and the relative performance ofthe turbulent combustion models are assessed. It is observed that the prediction quality can vary largely depending on the reaction mechanism and the turbulent combustion model. The best and quite satisfactory agreement with experiments is provided by two detailed reaction mechanisms applied with a PDF model.</jats:p
Validation of Combustion Models for Lifted Hydrogen Flame
Within a Reynolds Averaged Numerical Simulation (RANS) approach for turbulence modelling, a computational investigation of a turbulent lifted H2/N2 flame is presented. Various turbulent combustion models are considered including the Eddy Dissipation Model (EDM), the Eddy Dissipation Concept (EDC), and the composition Probability Density Function transport model (PDF) in combination with different detailed and global reaction mechanisms. Turbulence is modelled using the Standard k-ɛ model, which has proven to offer a good accuracy, based on a preceding validation study for an isothermal H2/N2 jet. Results are compared with the published measurements for a lifted H2/N2 flame, and the relative performance ofthe turbulent combustion models are assessed. It is observed that the prediction quality can vary largely depending on the reaction mechanism and the turbulent combustion model. The best and quite satisfactory agreement with experiments is provided by two detailed reaction mechanisms applied with a PDF model
- …
