5,400 research outputs found
Answer Set Planning Under Action Costs
Recently, planning based on answer set programming has been proposed as an
approach towards realizing declarative planning systems. In this paper, we
present the language Kc, which extends the declarative planning language K by
action costs. Kc provides the notion of admissible and optimal plans, which are
plans whose overall action costs are within a given limit resp. minimum over
all plans (i.e., cheapest plans). As we demonstrate, this novel language allows
for expressing some nontrivial planning tasks in a declarative way.
Furthermore, it can be utilized for representing planning problems under other
optimality criteria, such as computing ``shortest'' plans (with the least
number of steps), and refinement combinations of cheapest and fastest plans. We
study complexity aspects of the language Kc and provide a transformation to
logic programs, such that planning problems are solved via answer set
programming. Furthermore, we report experimental results on selected problems.
Our experience is encouraging that answer set planning may be a valuable
approach to expressive planning systems in which intricate planning problems
can be naturally specified and solved
Granular discharge rate for submerged hoppers
The discharge of spherical grains from a hole in the bottom of a right
circular cylinder is measured with the entire system underwater. We find that
the discharge rate depends on filling height, in contrast to the well-known
case of dry non-cohesive grains. It is further surprising that the rate
increases up to about twenty five percent, as the hopper empties and the
granular pressure head decreases. For deep filling, where the discharge rate is
constant, we measure the behavior as a function of both grain and hole
diameters. The discharge rate scale is set by the product of hole area and the
terminal falling speed of isolated grains. But there is a small-hole cutoff of
about two and half grain diameters, which is larger than the analogous cutoff
in the Beverloo equation for dry grains
Coherent control for the spherical symmetric box potential in short and intensive XUV laser fields
Coherent control calculations are presented for a spherically symmetric box
potential for non-resonant two photon transition probabilities. With the help
of a genetic algorithm (GA) the population of the excited states are maximized
and minimized. The external driving field is a superposition of three intensive
extreme ultraviolet (XUV) linearly polarized laser pulses with different
frequencies in the femtosecond duration range. We solved the quantum mechanical
problem within the dipole approximation. Our investigation clearly shows that
the dynamics of the electron current has a strong correlation with the
optimized and neutralizing pulse shape.Comment: 11 Pages 3 Figure
Hydrogen Production from the LOHC Perhydro-Dibenzyl-Toluene and Purification using a 5 µm PdAg-Membrane in a coupled Microstructured System
Hydrogen bound in organic liquid hydrogen carriers (LOHC) such as dibenzyl-toluene enables simple and safe handling as well as long-term storage. This idea is particularly interesting in the context of the energy transition, where hydrogen is considered a key energy carrier. The LOHC technology serves as a storage between volatile energy and locally and timely independent consumption. Depending on the type of application, decisive specifications are placed on the hydrogen purity. In the product gas from dehydrogenation, however, concentrations of 100 to a few 1000 ppm can be found from low boiling substances, which partly originate from the production of the LOHC material, but also from the decomposition and evaporation of the LOHC molecules in the course of the enormous volume expansion due to hydrogen release. For the removal of undesired traces in the LOHC material, a pre-treatment and storage under protective gas is necessary. For purification, the use of Pd-based membranes might be useful, which makes these steps less important or even redundant. Heat supply and phase contacting of the liquid LOHC and catalyst is also crucial for the process. Within the contribution, the first results from a coupled microstructured system—consisting of a radial flow reactor unit and membrane separation unit—are shown. In a first step, the 5 m thick PdAg-membrane was characterized and a high Sieverts exponent of 0.9 was determined, indicating adsorption/desorption driven permeation. It can be demonstrated that hydrogen is first released with high catalyst-related productivity in the reactor system and afterwards separated and purified. Within the framework of limited analytics, we found that by using a Pd-based membrane, a quality of 5.0 (99.999% purity) or higher can be achieved. Furthermore, it was found that after only 8 hours, the membrane can lose up to 30% of its performance when exposed to the slightly contaminated product gas from the dehydrogenation process. However, the separation efficiency can almost completely be restored by the treatment with pure hydrogen
Association Between {HIV}-1 Coreceptor Usage and Resistance to Broadly Neutralizing Antibodies
Background: Recently discovered broadly neutralizing antibodies have revitalized hopes of developing a universal vaccine against HIV-1. Mainly responsible for new infections are variants only using CCR5 for cell entry, whereas CXCR4-using variants can become dominant in later infection stages. Methods: We performed a statistical analysis on two different previously published data sets. The first data set was a panel of 199 diverse HIV-1 isolates for which IC50 neutralization titers were determined for the broadly neutralizing antibodies VRC01, VRC-PG04, PG9, and PG16. The second data set contained env sequences of viral variants extracted from HIV-1–infected humanized mice treated with the antibody PGT128 and from untreated control mice. Results: For the panel of 199 diverse HIV-1 isolates, we found a statistically significant association between viral resistance to PG9 and PG16 and CXCR4 coreceptor usage (P = 0.0011 and P = 0.0010, respectively). Our analysis of viral variants from HIV-1–infected humanized mice under treatment with the broadly neutralizing antibody PGT128 indicated that certain antibodies might drive a viral population toward developing CXCR4 coreceptor usage capability (P = 0.0011 for the comparison between PGT128 and control measurement). Conclusions: These analyses highlight the importance of accounting for a possible coreceptor usage bias pertaining to the effectiveness of an HIV vaccine and to passive antibody transfer as therapeutic approach
Direct current arc-plasma synthesis of B-C powder product
Measurement of blood oxygen saturation in biological tissue is of great interest for medical applications as it allows the detection of pathological alterations. Fibre based re-emission spectroscopy enables this parameter to be determined minimally-invasively in organ tissue inside the human body. In this report a measurement system for the contactless determination of blood oxygenation, as well as simulations regarding light diffusion in tissue are presented
Phase reconstruction of strong-field excited systems by transient-absorption spectroscopy
We study the evolution of a V-type three-level system, whose two resonances
are coherently excited and coupled by two ultrashort laser pump and probe
pulses, separated by a varying time delay. We relate the quantum dynamics of
the excited multi-level system to the absorption spectrum of the transmitted
probe pulse. In particular, by analyzing the quantum evolution of the system,
we interpret how atomic phases are differently encoded in the
time-delay-dependent spectral absorption profiles when the pump pulse either
precedes or follows the probe pulse. We experimentally apply this scheme to
atomic Rb, whose fine-structure-split 5s\,^2S_{1/2}\rightarrow 5p\,^2P_{1/2}
and 5s\,^2S_{1/2}\rightarrow 5p\,^2P_{3/2} transitions are driven by the
combined action of a pump pulse of variable intensity and a delayed probe
pulse. The provided understanding of the relationship between quantum phases
and absorption spectra represents an important step towards full time-dependent
phase reconstruction (quantum holography) of bound-state wave-packets in
strong-field light-matter interactions with atoms, molecules and solids.Comment: 5 pages, 4 figure
К вопросу определения октановых и цетановых чисел расчетным методом
Установлена связь октанового числа моторных топлив с их относительной плотностью и групповым углеводородным составом, а цетанового числа - с относительной плотностью, вязкостью, температурами застывания и вспышки, содержанием серы. Анализом матриц коэффициентов корреляции выбраны аргументы уравнений регрессии. Проверка полученных уравнений дала удовлетворительные результаты
- …