1,751 research outputs found

    Three-dimensional Imaging of Microstructure in Gold Nanocrystals

    Get PDF
    X-ray diffraction using a coherent beam involves the mutual interference among all the extremities of small crystals. The continuous diffraction pattern so produced can be phased because it can be oversampled. We have thus obtained three-dimensional images of the interiors of Au nanocrystals that show 50 nm wide bands of contrast with f111g orientation that probably arise from internal twinning by dynamic recrystallization during their formation at high temperature

    Reconstruction of the Shapes of Gold Nanocrystals using Coherent X-ray Diffraction

    Get PDF
    Inverse problems arise frequently in physics: The magnitude of the Fourier transform of some function is measurable, but not its phase. The “phase problem” in crystallography arises because the number of discrete measurements (Bragg peak intensities) is only half the number of unknowns (electron density points in space). Sayre first proposed that oversampling of diffraction data should allow a solution, and this has recently been demonstrated. Here we report the successful phasing of an oversampled hard x-ray diffraction pattern measured from a single nanocrystal of gold

    Diabetic Peripheral Neuropathy

    Full text link
    Diabetic autonomic neuropathies (DAN) are clinical syndromes resulting from impairments of the autonomic nervous system in patients with diabetes mellitus. Since the autonomic nervous system innervates most body organs, any or all of those organs may be affected by DAN. A high index of suspicion is the best diagnostic tool. Proper management, with patient and family education in its center, improves the quality of life of persons with DAN. Undiagnosed and ignored, DAN could cause severe disability and even death.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68591/2/10.1177_014572178701300208.pd

    Numerical study of multilayer adsorption on fractal surfaces

    Full text link
    We report a numerical study of van der Waals adsoprtion and capillary condensation effects on self-similar fractal surfaces. An assembly of uncoupled spherical pores with a power-law distributin of radii is used to model fractal surfaces with adjustable dimensions. We find that the commonly used fractal Frankel-Halsey-Hill equation systematically fails to give the correct dimension due to crossover effects, consistent with the findings of recent experiments. The effects of pore coupling and curvature dependent surface tension were also studied.Comment: 11 pages, 3 figure

    On Enabling Data-Aware Compliance Checking of Business Process Models

    Get PDF
    In the light of an increasing demand on business process compliance, the verication of process models against compliance rules has become essential in enterprise computing. To be broadly applicable compliance checking has to support data-aware compliance rules as well as to consider data conditions within a process model. Independently of the actual technique applied to accomplish compliance checking, dataawareness means that in addition to the control ow dimension, the data dimension has to be explored during compliance checking. However, naive exploration of the data dimension can lead to state explosion. We address this issue by introducing an abstraction approach in this paper. We show how state explosion can be avoided by conducting compliance checking for an abstract process model and abstract compliance rules. Our abstraction approach can serve as preprocessing step to the actual compliance checking and provides the basis for more ecient application of existing compliance checking algorithms

    SeaFlows Toolset - Compliance Verification Made Easy for Process-aware Information Systems

    Get PDF
    In the light of an increasing demand on business process compliance, the verication of process models against compliance rules has become essential in enterprise computing. The SeaFlows Toolset featured in this paper extends process-aware information systems with compliance checking functionality. It provides a user-friendly environment for modeling compliance rules using a graph-based formalism and for enriching process models with these rules. To address a multitude of verification settings, we provide two complementary compliance checking approaches: The structural compliance checking approach derives structural criteria from compliance rules and applies them to detect incompliance. The data-aware behavioral compliance checking approach addresses the state explosion problem that can occur when the data dimension is explored during compliance checking. It performs context-sensitive automatic abstraction to derive an abstract process model which is more compact with regard to the data dimension enabling more efficient compliance checking. Altogether, SeaFlows Toolset constitutes a comprehensive and extensible framework for compliance checking of process models

    Phase-Diverse Coherent Diffractive Imaging: High Sensitivity with Low Dose

    Get PDF
    This Letter demonstrates that coherent diffractive imaging (CDI), in combination with phase-diversity methods, provides reliable and artefact free high-resolution images. Here, using x rays, experimental results show a threefold improvement in the available image contrast. Furthermore, in conditions requiring low imaging dose, it is demonstrated that phase-diverse CDI provides a factor of 2 improvement in comparison to previous CDI techniques

    MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models

    Get PDF
    Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEv​al/downloads

    BRAF mutation is not predictive of long-term outcome in papillary thyroid carcinoma

    Get PDF
    The BRAF mutation occurs commonly in papillary thyroid carcinoma (PTC). Previous investigations of its utility to predict recurrence-free survival (RFS) and disease-specific survival (DSS) have reported conflicting results and its role remains unclear. The purpose of this retrospective study was to determine the incidence of the BRAF mutation and analyze its relationship to clinicopathologic risk factors and long-term outcomes in the largest, single-institution American cohort to date. BRAF mutational status was determined in 508 PTC patients using RFLP analysis. The relationships between BRAF mutation status, patient and tumor characteristics, RFS, and DSS were analyzed. The BRAF mutation was present in 67% of patients. On multivariate analysis, presence of the mutation predicted only for capsular invasion (HR, 1.7; 95% CI, 1.1–2.6), cervical lymph node involvement (HR, 1.7; 95% CI, 1.1–2.7), and classic papillary histology (HR, 1.8; 95% CI 1.1–2.9). There was no significant relationship between the BRAF mutation and RFS or DSS, an observation that was consistent across univariate, multivariate, and Kaplan–Meier analyses. This is the most extensive study to date in the United States to demonstrate that BRAF mutation is of no predictive value for recurrence or survival in PTC. We found correlations of BRAF status and several clinicopathologic characteristics of high-risk disease, but limited evidence that the mutation correlates with more extensive or aggressive disease. This analysis suggests that BRAF is minimally prognostic in PTC. However, prevalence of the BRAF mutation is 70% in the general population, providing the opportunity for targeted therapy

    Grasping with a soft glove: intrinsic impedance control in pneumatic actuators

    Get PDF
    The interaction of a robotic manipulator with unknown soft objects represents a significant challenge for traditional robotic platforms because of the difficulty in controlling the grasping force between a soft object and a stiff manipulator. Soft robotic actuators inspired by elephant trunks, octopus limbs and muscular hydrostats are suggestive of ways to overcome this fundamental difficulty. In particular, the large intrinsic compliance of soft manipulators such as ‘pneu-nets’—pneumatically actuated elastomeric structures—makes them ideal for applications that require interactions with an uncertain mechanical and geometrical environment. Using a simple theoretical model, we show how the geometric and material nonlinearities inherent in the passive mechanical response of such devices can be used to grasp soft objects using force control, and stiff objects using position control, without any need for active sensing or feedback control. Our study is suggestive of a general principle for designing actuators with autonomous intrinsic impedance control
    corecore