6,330 research outputs found
Life without the Beach: Projected Sea Level Rise and its Impact on Barrier Islands Along the East Coast, USA
As climate change is becoming a global issue, the impact of sea level rise is increasingly becoming a threat to humans, wildlife, infrastructure, and ecosystems. To evaluate the effects of sea level rise on barrier islands and coastal regions, we studied future projections of sea level rise at Ocean City and Assateague Island, Maryland. We hypothesize that the sea levels at Assateague and Ocean City will have different beach profiles, and will show different levels of flooding through the Representative Concentration Pathways (RCP) simulations. We measured beach profiles at four locations, two at Ocean City and two at Assateague Island, to view the current beach profiles and found that Ocean City reveals a smaller average change in elevation compared to Assateague. We also used a LiDAR Digital Elevation Model (DEM) of Ocean City and Assateague Island to run RCP 2.6, RCP 4.5, and RCP 8.5 simulations using GIS to represent the Intergovernmental Panel on Climate Change (IPCC) projected sea level rise for the year 2100. We found that Ocean City has higher predicted percentages of flooded land but smaller areas of flooded land compared to Assateague. These results indicate that significant areas of both Ocean City and Assateague Island will be flooded by 2100 regardless of which RCP simulation might be true. However, it is projected that the RCP 2.6 simulation is an underestimation of potential flooding and the future will more closely resemble the RCP 8.5 simulation if drastic precautions are not taken now. This will severely impact ecosystems, economies, and human life
Conformational perturbation, allosteric modulation of cellular signaling pathways, and disease in P23H rhodopsin
In this investigation we use THz spectroscopy and MD simulation to study the functional dynamics and conformational stability of P23H rhodopsin. The P23H mutation of rod opsin is the most common cause of human binding autosomal dominant retinitis pigmentosa (ADRP), but the precise mechanism by which this mutation leads to photoreceptor cell degeneration has not yet been elucidated. Our measurements confirm conformational instability in the global modes of the receptor and an activestate that uncouples the torsional dynamics of the retinal with protein functional modes, indicating inefficient signaling in P23H and a drastically altered mechanism of activation when contrasted with the wild-type receptor. Further, our MD simulations indicate that P23H rhodopsin is not functional as a monomer but rather, due to the instability of the mutant receptor, preferentially adopts a specific homodimerization motif. The preferred homodimer configuration induces structural changes in the receptor tertiary structure that reduces the affinity of the receptor for the retinal and significantly modifies the interactions of the Meta-II signaling state. We conjecture that the formation of the specific dimerization motif of P23H rhodopsin represents a cellular-wide signaling perturbation that is directly tied with the mechanism of P23H disease pathogenesis. Our results also support a direct role for rhodopsin P23H dimerization in photoreceptor rod death
The E-MOSAICS project: simulating the formation and co-evolution of galaxies and their star cluster populations
We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population’s initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ∼L galaxies with disc-like morphologies atz = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z 1–2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome this shortcoming
Can a connectionist model explain the processing of regularly and irregularly inflected words in German as L1 and L2?
The connectionist model is a prevailing model of the structure and functioning of the cognitive system of the processing of morphology. According to this model, the morphology of regularly and irregularly inflected words (e.g., verb participles and noun plurals) is processed in the same cognitive network. A validation of the connectionist model of the processing of morphology in German as L2 has yet to be achieved. To investigate L2-specific aspects, we compared a group of L1 speakers of German with speakers of German as L2. L2 and L1 speakers of German were assigned to their respective group by their reaction times in picture naming prior to the central task. The reaction times in the lexical decision task of verb participles and noun plurals were largely consistent with the assumption of the connectionist model. Interestingly, speakers of German as L2 showed a specific advantage for irregular compared with regular verb participles
Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors
G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals
Evaluation of Assisted Fluidization of Nanoagglomerates by Monitoring Moisture in the Gas Phase and the Influence of Gas Viscosity
We have previously reported that the fluidization of nanoparticle agglomerates can be enhanced by the addition of external force fields such as vibration, acoustic waves, centrifugal force, and magnetic particles. The criteria usually used to evaluate the enhancement in fluidization quality are the fluidized bed expansion, pressure drop, and visual appearance of the fluidized bed to determine the presence of bubbles, large heavy agglomerates and/or channeling and spouting. Here we introduce a different approach based on measuring the rate of absorption/desorption of moisture (humidification/drying) of hydrophilic fluidized nanopowders. The fluidizing gas was humidified in a controlled manner, and the amount of moisture in the gas phase was measured before and after the fluidized bed by humidity sensors. The experiments show that the amount of moisture adsorbed or desorbed by the bed of powder is larger when the fluidized bed was assisted by vibration or moving magnetic particles than when the bed was conventionally fluidized. In addition, the effect of high temperature gas on the fluidization of nanopowders was studied by using neon as a fluidizing gas at room temperature. It is shown that due to the increase in gas viscosity, the minimum bubbling velocity is increased, bubbling is reduced and a smoother fluidization is obtained
Dynamical cluster disruption and its implications for multiple population models in the E-MOSAICS simulations
© 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. Several models have been advanced to explain the multiple stellar populations observed in globular clusters (GCs). Most models necessitate a large initial population of unenriched stars that provide the pollution for an enriched population, and which are subsequently lost from the cluster. This scenario generally requires clusters to lose > 90 per cent of their birth mass. We use a suite of 25 cosmological zoom-in simulations of present-day Milky Way mass galaxies from the E-MOSAICS project to study whether dynamical disruption by evaporation and tidal shocking provides the necessary mass-loss. We find that GCs with present-day masses M > 105M⊙were only 2-4 times more massive at birth, in conflict with the requirements of the proposed models. This factor correlates weakly with metallicity, gas pressure at birth, or galactocentric radius, but increases towards lower GC masses. To reconcile our results with observational data, either an unphysically steep cluster mass-size relation must be assumed, or the initial enriched fractions must be similar to their present values. We provide the required relation between the initial enriched fraction and cluster mass. Dynamical cluster mass-loss cannot reproduce the high observed enriched fractions nor their trend with cluster mass
Expression of junctional proteins in choroid plexus epithelial cell lines: a comparative study
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
- …