1,053 research outputs found

    Influence of seating styles on head and pelvic vertical movement symmetry in horses ridden at trot

    Get PDF
    Detailed knowledge of how a rider’s seating style and riding on a circle influences the movement symmetry of the horse’s head and pelvis may aid rider and trainer in an early recognition of low grade lameness. Such knowledge is also important during both subjective and objective lameness evaluations in the ridden horse in a clinical setting. In this study, inertial sensors were used to assess how different rider seating styles may influence head and pelvic movement symmetry in horses trotting in a straight line and on the circle in both directions. A total of 26 horses were subjected to 15 different conditions at trot: three unridden conditions and 12 ridden conditions where the rider performed three different seating styles (rising trot, sitting trot and two point seat). Rising trot induced systematic changes in movement symmetry of the horses. The most prominent effect was decreased pelvic rise that occurred as the rider was actively rising up in the stirrups, thus creating a downward momentum counteracting the horses push off. This mimics a push off lameness in the hindlimb that is in stance when the rider sits down in the saddle during the rising trot. On the circle, the asymmetries induced by rising trot on the correct diagonal counteracted the circle induced asymmetries, rendering the horse more symmetrical. This finding offers an explanation to the equestrian tradition of rising on the ‘correct diagonal.’ In horses with small pre-existing movement asymmetries, the asymmetry induced by rising trot, as well as the circular track, attenuated or reduced the horse’s baseline asymmetry, depending on the sitting diagonal and direction on the circle. A push off hindlimb lameness would be expected to increase when the rider sits during the lame hindlimb stance whereas an impact hindlimb lameness would be expected to decrease. These findings suggest that the rising trot may be useful for identifying the type of lameness during subjective lameness assessment of hindlimb lameness. This theory needs to be studied further in clinically lame horses

    Tuning the dipolar interaction in quantum gases

    Full text link
    We have studied the tunability of the interaction between permanent dipoles in Bose-Einstein condensates. Based on time-dependent control of the anisotropy of the dipolar interaction, we show that even the very weak magnetic dipole coupling in alkali gases can be used to excite collective modes. Furthermore, we discuss how the effective dipolar coupling in a Bose-Einstein condensate can be tuned from positive to negative values and even switched off completely by fast rotation of the orientation of the dipoles.Comment: 4 pages, 3 figures. Submitted to PRL. (v3: Figure 3 replaced

    Is a standalone inertial measurement unit accurate and precise enough for quantification of movement symmetry in the horse?

    Get PDF
    Standalone ‘low-cost’ inertial measurement units (IMUs) could facilitate large-scale studies into establishing minimal important differences (MID) for orthopaedic deficits (lameness) in horses. We investigated accuracy and limits of agreement (LoA) after correction of magnitude-dependent differences of a standalone 6 degree-of-freedom IMU compared with an established IMU-based gait analysis system (MTx) in six horses for two anatomical landmarks (sacrum and sternum). Established symmetry measures were calculated from vertical displacement: symmetry index (SI), difference between minima (MinDiff) and difference between maxima (MaxDiff). For the sacrum, LoA were ± 0.095 for SI, ± 6.6 mm for MinDiff and ± 4.3 mm for MaxDiff. For the sternum, LoA values were ± 0.088 for SI, ± 5.0 mm for MinDiff and ± 4.2 mm for MaxDiff. Compared with reference data from mildly lame horses, SI values indicate sufficient precision, whereas MinDiff and MaxDiff values are less favourable. Future studies should investigate specific calibration and processing algorithms further improving standalone IMU performance

    Stable periodic density waves in dipolar Bose-Einstein condensates trapped in optical lattices

    Full text link
    Density-wave patterns in (quasi-) discrete media with local interactions are known to be unstable. We demonstrate that \emph{stable} double- and triple- period patterns (DPPs and TPPs), with respect to the period of the underlying lattice, exist in media with nonlocal nonlinearity. This is shown in detail for dipolar Bose-Einstein condensates (BECs), loaded into a deep one-dimensional (1D) optical lattice (OL), by means of analytical and numerical methods in the tight-binding limit. The patterns featuring multiple periodicities are generated by the modulational instability of the continuous-wave (CW) state, whose period is identical to that of the OL. The DPP and TPP emerge via phase transitions of the second and first kind, respectively. The emerging patterns may be stable provided that the dipole-dipole (DD) interactions are repulsive and sufficiently strong, in comparison with the local repulsive nonlinearity. Within the set of the considered states, the TPPs realize a minimum of the free energy. Accordingly, a vast stability region for the TPPs is found in the parameter space, while the DPP\ stability region is relatively narrow. The same mechanism may create stable density-wave patterns in other physical media featuring nonlocal interactions, such as arrayed optical waveguides with thermal nonlinearity.Comment: 7 pages, 4 figures, Phys. Rev. Lett., in pres

    Observation of Feshbach resonances in an ultracold gas of 52{}^{52}Cr

    Full text link
    We have observed Feshbach resonances in elastic collisions between ultracold 52{}^{52}Cr atoms. This is the first observation of collisional Feshbach resonances in an atomic species with more than one valence electron. The zero nuclear spin of 52{}^{52}Cr and thus the absence of a Fermi-contact interaction leads to regularly-spaced resonance sequences. By comparing resonance positions with multi-channel scattering calculations we determine the s-wave scattering length of the lowest 2S+1Σg+^{2S+1}\Sigma_{g}^{+} potentials to be \unit[112(14)]{a_0}, \unit[58(6)]{a_0} and -\unit[7(20)]{a_0} for S=6, 4, and 2, respectively, where a_{0}=\unit[0.0529]{nm}.Comment: 4 pages, 2 figures, 1 tabl
    corecore